TY - JOUR
T1 - A hybridized methodology of different wavelet transformations targeting medical images in IoT infrastructure
AU - Al-Shayea, Tamara K.
AU - Mavromoustakis, Constandinos X.
AU - Batalla, Jordi Mongay
AU - Mastorakis, George
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The Internet of Things (IoT) paradigm has become a vital part of all significant scientific sectors, including the healthcare domain. Medical images in the healthcare sector are indispensable items that are usually susceptible to distortion once they are shared and transferred via the Internet. The sector faces the distinct and constant challenge of preserving medical data, which can be manipulated by various malicious attacks, in turn potentially compromising the patients’ diagnostic data. In this situation, such medical data ought to be private, with access only granted to patients and physicians. This paper elaborates on a hybrid measurement technique for digital image watermarking that utilizes medical images (X-ray, MRA, and CT), which are an extremely robust method for protecting clinical information. The authors explore various different wavelet families, in addition to hybridization between these wavelets. These are carried out on three levels decomposition of Discrete wavelet transformation (biorthogonal 6.8 wavelets, biorthogonal 3.5 wavelets, biorthogonal 5.5 wavelets, reverse biorthogonal 6.8, reverse biorthogonal 3.5, reverse biorthogonal 5.5, discrete meyer, symlets 5, symlets 8 coiflets 4 wavelet, and coiflets 5 wavelet transform). Each level uses various types of wavelet transformation to present the watermarked image, and then extracts the medical watermark from the original watermarked image. The results of diverse types of attack have been compared, while the proposed measurement technique's performance is evaluated using statistical parameters (MSE, PSNR, SSIM, and NC). This in turn measures the quality of the image, which so far shows promising results.
AB - The Internet of Things (IoT) paradigm has become a vital part of all significant scientific sectors, including the healthcare domain. Medical images in the healthcare sector are indispensable items that are usually susceptible to distortion once they are shared and transferred via the Internet. The sector faces the distinct and constant challenge of preserving medical data, which can be manipulated by various malicious attacks, in turn potentially compromising the patients’ diagnostic data. In this situation, such medical data ought to be private, with access only granted to patients and physicians. This paper elaborates on a hybrid measurement technique for digital image watermarking that utilizes medical images (X-ray, MRA, and CT), which are an extremely robust method for protecting clinical information. The authors explore various different wavelet families, in addition to hybridization between these wavelets. These are carried out on three levels decomposition of Discrete wavelet transformation (biorthogonal 6.8 wavelets, biorthogonal 3.5 wavelets, biorthogonal 5.5 wavelets, reverse biorthogonal 6.8, reverse biorthogonal 3.5, reverse biorthogonal 5.5, discrete meyer, symlets 5, symlets 8 coiflets 4 wavelet, and coiflets 5 wavelet transform). Each level uses various types of wavelet transformation to present the watermarked image, and then extracts the medical watermark from the original watermarked image. The results of diverse types of attack have been compared, while the proposed measurement technique's performance is evaluated using statistical parameters (MSE, PSNR, SSIM, and NC). This in turn measures the quality of the image, which so far shows promising results.
KW - Biorthogonal wavelet
KW - Coiflets wavelet
KW - Discrete meyer wavelet
KW - Medical image watermarking
KW - Reverse biorthogonal wavelet
KW - Symlets wavelet
UR - http://www.scopus.com/inward/record.url?scp=85070994716&partnerID=8YFLogxK
U2 - 10.1016/j.measurement.2019.07.041
DO - 10.1016/j.measurement.2019.07.041
M3 - Article
AN - SCOPUS:85070994716
SN - 0263-2241
VL - 148
JO - Measurement: Journal of the International Measurement Confederation
JF - Measurement: Journal of the International Measurement Confederation
M1 - 106813
ER -