Abstract
Assessment of various low-Re two-equation turbulence models in transonic flow with shock-boundary layer interaction and separation, is presented. The study includes seven different versions of the k-ε model, as well as the k-ω and k-R models. The models are implemented in conjunction with a characteristics-based scheme and an implicit unfactored method. The implicit unfactored solution of the fluid flow and turbulence transport equations is obtained by a Newton-type method which includes point-by-point Gauss-Seidel relaxation for the inversion of the system of equations. The accuracy and efficiency of the models is assessed for the transonic flow over an axisymmetric bump geometry. The differences in the numerical results between various models are mainly presented in the kinetic energy and turbulent shear-stress, especially in the separated flow region. The study also reveals that the number of iterations required for steady state solution depends strongly on the model used.
Original language | English |
---|---|
Pages (from-to) | 155-174 |
Number of pages | 20 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Volume | 160 |
Issue number | 1-2 /2 |
DOIs | |
Publication status | Published - 15 Jul 1998 |
Externally published | Yes |