Abstract
The impact of a thin layer of a ductile fiber-reinforced concrete referred to as engineered cementitious composites (ECC) on unreinforced masonry (URM) prisms and beams has been evaluated. The objective of the research was to characterize the performance and potential benefits of using ECC to retrofit URM with eventual application to masonry infill walls in non-ductile reinforced concrete frames. Compression tests of masonry prisms and flexural tests of masonry beams with different ECC retrofit schemes were conducted. The variables studied were the use of wall anchors to improve the ECC-masonry bond and alternate steel reinforcement ratios within the ECC layer in the form of welded wire fabric. The ECC retrofit was found to increase the strength and stiffness of URM prisms by 45 and 53 %, respectively compared to those of a plain specimen. When wall anchors were installed on the masonry specimens, the bond between the ECC layer and the masonry surface was improved. Four-point bending tests indicated that the strength and more importantly the ductility of an ECC retrofitted brick beam are increased significantly, especially when light reinforcement is added to the ECC layer, relative to an URM beam. Analytical models for estimating the strength and stiffness of ECC retrofitted masonry specimens are proposed and evaluated.
Original language | English |
---|---|
Pages (from-to) | 1573-1587 |
Number of pages | 15 |
Journal | Materials and Structures/Materiaux et Constructions |
Volume | 47 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- Compression tests
- Engineered cementitious composites
- Flexural tests
- Retrofit
- Sprayable
- Unreinforced masonry