TY - JOUR
T1 - Changes in mouse mu opioid receptor exon 7/8-like immunoreactivity following food restriction and food deprivation in rats
AU - Hadjimarkou, Maria M.
AU - Abbadie, Catherine
AU - Kasselman, Lora J.
AU - Pan, Ying Xian
AU - Pasternak, Gavril W.
AU - Bodnar, Richard J.
PY - 2009/7
Y1 - 2009/7
N2 - Opioid agonists and antagonists respectively increase and decrease food intake. That selective mu opioid antagonists are more effective than antisense probes directed against the mu opioid receptor (MOR-1) gene in reducing deprivation-induced feeding suggests a role for isoforms. Both food restriction and deprivation alter protein and mRNA levels of opioid peptides and receptors. Antisera directed against Exon 4 of the MOR-1-like immunoreactivity (LI) (Exon 4) clone or directed against mouse Exons 7/8 (mE7/8-LI) revealed high levels of immunoreactivity in brain nuclei related to feeding behavior. Therefore, the present study assessed MOR-1LI and mE7/8-LI in hypothalamic and extrahypothalamic sites in rats exposed to ad libitum feeding, food restriction (2, 7, 14 days), or food deprivation (24, 48 h). MOR-1-LI displayed robust reactivity, but was insensitive to food restriction or deprivation. mE7/8-LI, both in terms of cell counts and relative optical density, was significantly and selectively increased in the dorsal and ventral parvocellular subdivisions of the hypothalamic paraventricular nucleus in food-restricted (14 days) rats, but all other restriction or deprivation regimens were ineffective in other hypothalamic nuclei. In contrast, significant and site-specific decreases in relative optical density in the rostral part of the nucleus tractus solitarius (NTS) were observed in food-restricted (2, 7 days) or food-deprived (24, 48 h) animals, but these regimens were ineffective in the other extrahypothalamic sites. This study indicates the sensitivity of this mE7/8-LI probe in the hypothalamic parvocellular paraventricular nucleus and rostral NTS to food restriction and deprivation in rats.
AB - Opioid agonists and antagonists respectively increase and decrease food intake. That selective mu opioid antagonists are more effective than antisense probes directed against the mu opioid receptor (MOR-1) gene in reducing deprivation-induced feeding suggests a role for isoforms. Both food restriction and deprivation alter protein and mRNA levels of opioid peptides and receptors. Antisera directed against Exon 4 of the MOR-1-like immunoreactivity (LI) (Exon 4) clone or directed against mouse Exons 7/8 (mE7/8-LI) revealed high levels of immunoreactivity in brain nuclei related to feeding behavior. Therefore, the present study assessed MOR-1LI and mE7/8-LI in hypothalamic and extrahypothalamic sites in rats exposed to ad libitum feeding, food restriction (2, 7, 14 days), or food deprivation (24, 48 h). MOR-1-LI displayed robust reactivity, but was insensitive to food restriction or deprivation. mE7/8-LI, both in terms of cell counts and relative optical density, was significantly and selectively increased in the dorsal and ventral parvocellular subdivisions of the hypothalamic paraventricular nucleus in food-restricted (14 days) rats, but all other restriction or deprivation regimens were ineffective in other hypothalamic nuclei. In contrast, significant and site-specific decreases in relative optical density in the rostral part of the nucleus tractus solitarius (NTS) were observed in food-restricted (2, 7 days) or food-deprived (24, 48 h) animals, but these regimens were ineffective in the other extrahypothalamic sites. This study indicates the sensitivity of this mE7/8-LI probe in the hypothalamic parvocellular paraventricular nucleus and rostral NTS to food restriction and deprivation in rats.
KW - Nucleus tractus solitarius
KW - Opioids
KW - Paraventricular hypothalamic nucleus
UR - http://www.scopus.com/inward/record.url?scp=67449103229&partnerID=8YFLogxK
U2 - 10.1002/syn.20639
DO - 10.1002/syn.20639
M3 - Article
C2 - 19301417
AN - SCOPUS:67449103229
SN - 0887-4476
VL - 63
SP - 585
EP - 597
JO - Synapse
JF - Synapse
IS - 7
ER -