TY - JOUR
T1 - CYP450- and COMT-derived estradiol metabolites inhibit activity of human coronary artery SMCs
AU - Dubey, Raghvendra K.
AU - Gillespie, Delbert G.
AU - Zacharia, Lefteris C.
AU - Barchiesi, Federica
AU - Imthurn, Bruno
AU - Jackson, Edwin K.
PY - 2003/3/1
Y1 - 2003/3/1
N2 - The purpose of this study is to test the hypothesis that the inhibitory effects of estradiol in human coronary vascular smooth muscle cells are mediated via local conversion to methoxyestradiols via specific cytochrome P450s (CYP450s) and catechol-O-methyltransferase (COMT). The inhibitory effects of estradiol on serum-induced cell activity (DNA synthesis, cell number, collagen synthesis, and cell migration) were enhanced by 3-methylcholantherene, phenobarbital (broad-spectrum CYP450 inducers), and βnaphthoflavone (CYP1A1/1A2 inducer) and were blocked by 1-aminobenzotriazole (broad-spectrum CYP450 inhibitor). Ellipticine, α-naphthoflavone (selective CYP1A1 inhibitors), and pyrene (selective CYP1B1 inhibitor), but not ketoconazole (selective CYP3A4 inhibitor) or furafylline (selective CYP1A2 inhibitor), abrogated the inhibitor effects of estradiol on cell activity, a profile consistent with a CYP1A1/CYP1B1-mediated mechanism. The inhibitory effects of estradiol were blocked by the COMT inhibitors OR486 and quercetin. The estrogen receptor antagonist ICI 182,780 blocked the inhibitory effects of estradiol, but only at concentrations that also blocked the metabolism of estradiol to hydroxyestradiols (precursors of methoxyestradiols). Western blot analysis revealed that coronary smooth muscle cells expressed CYP1A1 and CYP1B1. Moreover, these cells metabolized estradiol to hydroxyestradiols and methoxyestradiols, and the conversion of 2-hydroxyestradiol to 2-methoxyestradiol was blocked by OR486 and quercetin. These findings provide evidence that the inhibitory effects of estradiol on coronary smooth muscle cells are largely mediated via CYP1A1- and CYP1B1-derived hydroxyestradiols that are converted to methoxyestradiols by COMT.
AB - The purpose of this study is to test the hypothesis that the inhibitory effects of estradiol in human coronary vascular smooth muscle cells are mediated via local conversion to methoxyestradiols via specific cytochrome P450s (CYP450s) and catechol-O-methyltransferase (COMT). The inhibitory effects of estradiol on serum-induced cell activity (DNA synthesis, cell number, collagen synthesis, and cell migration) were enhanced by 3-methylcholantherene, phenobarbital (broad-spectrum CYP450 inducers), and βnaphthoflavone (CYP1A1/1A2 inducer) and were blocked by 1-aminobenzotriazole (broad-spectrum CYP450 inhibitor). Ellipticine, α-naphthoflavone (selective CYP1A1 inhibitors), and pyrene (selective CYP1B1 inhibitor), but not ketoconazole (selective CYP3A4 inhibitor) or furafylline (selective CYP1A2 inhibitor), abrogated the inhibitor effects of estradiol on cell activity, a profile consistent with a CYP1A1/CYP1B1-mediated mechanism. The inhibitory effects of estradiol were blocked by the COMT inhibitors OR486 and quercetin. The estrogen receptor antagonist ICI 182,780 blocked the inhibitory effects of estradiol, but only at concentrations that also blocked the metabolism of estradiol to hydroxyestradiols (precursors of methoxyestradiols). Western blot analysis revealed that coronary smooth muscle cells expressed CYP1A1 and CYP1B1. Moreover, these cells metabolized estradiol to hydroxyestradiols and methoxyestradiols, and the conversion of 2-hydroxyestradiol to 2-methoxyestradiol was blocked by OR486 and quercetin. These findings provide evidence that the inhibitory effects of estradiol on coronary smooth muscle cells are largely mediated via CYP1A1- and CYP1B1-derived hydroxyestradiols that are converted to methoxyestradiols by COMT.
KW - Cardiovascular diseases
KW - Coronary artery disease
KW - Estrogen
KW - Hormones
KW - Menopause
KW - Metabolism
KW - Remodeling
UR - http://www.scopus.com/inward/record.url?scp=0037342726&partnerID=8YFLogxK
U2 - 10.1161/01.HYP.0000048862.28501.72
DO - 10.1161/01.HYP.0000048862.28501.72
M3 - Article
C2 - 12624000
AN - SCOPUS:0037342726
SN - 0194-911X
VL - 41
SP - 807
EP - 813
JO - Hypertension
JF - Hypertension
IS - 3 II
ER -