TY - GEN
T1 - Design of Beam-Steerable Array for 5G Applications Using Tunable Liquid-Crystal Phase Shifters
AU - Nestoros, Marios
AU - Papanicolaou, Nectarios C.
AU - Polycarpou, Anastasis C.
N1 - Publisher Copyright:
© 2019 European Association on Antennas and Propagation.
PY - 2019/3
Y1 - 2019/3
N2 - In this paper, we propose a new design concept of a beam-steerable, two-element array of microstrip patch antennas for 5G smartphone applications. The main beam is steered toward different directions through the use of a tunable phase shifter based on nematic liquid crystals (N-LC). The relative phase introduced at the input terminals of the two patch antennas is controlled through a bias voltage between 0 and 10 Volts. This external bias voltage changes the orientation of the LC molecules inside a cavity underneath the microstrip line, thus affecting the dielectric constant of the material, and effectively, the time delay. The antennas are fed through a feed network of microstrip lines. This design was optimized to provide impedance matching and low reflection coefficient. Simulation results using ANSYS HFSS reveal that the main beam can be switched toward different directions through the use of a low-intensity, low-frequency AC voltage that is applied externally between the microstrip line of the phase shifter and the common ground.
AB - In this paper, we propose a new design concept of a beam-steerable, two-element array of microstrip patch antennas for 5G smartphone applications. The main beam is steered toward different directions through the use of a tunable phase shifter based on nematic liquid crystals (N-LC). The relative phase introduced at the input terminals of the two patch antennas is controlled through a bias voltage between 0 and 10 Volts. This external bias voltage changes the orientation of the LC molecules inside a cavity underneath the microstrip line, thus affecting the dielectric constant of the material, and effectively, the time delay. The antennas are fed through a feed network of microstrip lines. This design was optimized to provide impedance matching and low reflection coefficient. Simulation results using ANSYS HFSS reveal that the main beam can be switched toward different directions through the use of a low-intensity, low-frequency AC voltage that is applied externally between the microstrip line of the phase shifter and the common ground.
KW - Nematic liquid crystals
KW - reconfigurable antennas
KW - steerable arrays
KW - tunable phase shifters
UR - http://www.scopus.com/inward/record.url?scp=85068432485&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85068432485
T3 - 13th European Conference on Antennas and Propagation, EuCAP 2019
BT - 13th European Conference on Antennas and Propagation, EuCAP 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 13th European Conference on Antennas and Propagation, EuCAP 2019
Y2 - 31 March 2019 through 5 April 2019
ER -