Earthquake-induced poundings of a seismically isolated building with adjacent structures

Panayiotis C. Polycarpou, Petros Komodromos

Research output: Contribution to journalArticlepeer-review


Past earthquakes have revealed detrimental effects of pounding on the seismic performance of conventional fixed-supported buildings, ranging from light local damage to more severe structural failure. However, the potential consequences of earthquake-induced poundings on seismically isolated buildings can be much more substantial, and, thus, should be assessed. This paper investigates, through numerical simulations, the effects of potential pounding incidences on the seismic response of a typical seismically isolated building. Such impact events may occur either with the surrounding moat wall at the building's base or against an adjacent building that may stand at a very close distance. A specialized software application has been developed in order to efficiently perform numerical simulations and parametric studies of this problem. The effects of certain parameters, such as the size of the separation distance, the characteristics of the adjacent structures and the earthquake characteristics, have been investigated using the developed software. The simulations have revealed that even if a sufficient gap is provided, with which poundings with the surrounding moat wall at the base of the building could be avoided, this does not ensure that the building will not eventually collide with neighboring buildings due to the deformations of their superstructures.

Original languageEnglish
Pages (from-to)1937-1951
Number of pages15
JournalEngineering Structures
Issue number7
Publication statusPublished - Jul 2010


  • Adjacent structure
  • Impact
  • Moat wall
  • Poundings
  • Seismic isolation


Dive into the research topics of 'Earthquake-induced poundings of a seismically isolated building with adjacent structures'. Together they form a unique fingerprint.

Cite this