TY - GEN
T1 - Electromagnetic modeling and simulation of microwave and mm-wave devices based on liquid crystal compounds
AU - Papanicolaou, N. C.
AU - Christou, M. A.
AU - Polycarpou, A. C.
AU - Nestoros, M.
AU - Tchema, R.
N1 - Publisher Copyright:
© 2020 Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12/3
Y1 - 2020/12/3
N2 - Tunable devices and materials have always been extremely important for a variety of applications in the optical as well as the μ-wave and mm-wave bands. With the arrival of 5G communicationsnetworks and the ubiquitous use of wireless gadgets and applications ranging from smartphones to the implementation of the Internet of Things (IoT), the need for compact, versatile, and lightweight devices is imperative. Liquid Crystals (LCs) are anisotropic and tunable, and these properties makethem an attractive proposition for use in portable devices and communication hubs. In this paper, three such LC-based devices operating in the 5GHz I 30GHz (5G) bands are presented: A frequency-agile patch antenna, a variable phase shifter, and a beam- steerable leaky wave antenna. In all cases, tunability is achieved via the application of a low-strength external bias electric field. This affects the dielectric properties of the crystal by re-orienting its molecules, the macroscopic orientation of which is denoted by a unit vector called the director. The dielectric properties of the LC-cell are characterized by its relative permittivity tensor, which is a function of the directors' orientation. The latter is determined at every point of the cell by solving a coupled system of partial differential equations (PDEs) numerically. The obtained relative permittivity tensor is input into a high-frequency full- wave electromagnetic simulator based on the finite-element method (FEM). Finally, the simulation results are analyzed and the performance and capabilities of the applications are discussed.
AB - Tunable devices and materials have always been extremely important for a variety of applications in the optical as well as the μ-wave and mm-wave bands. With the arrival of 5G communicationsnetworks and the ubiquitous use of wireless gadgets and applications ranging from smartphones to the implementation of the Internet of Things (IoT), the need for compact, versatile, and lightweight devices is imperative. Liquid Crystals (LCs) are anisotropic and tunable, and these properties makethem an attractive proposition for use in portable devices and communication hubs. In this paper, three such LC-based devices operating in the 5GHz I 30GHz (5G) bands are presented: A frequency-agile patch antenna, a variable phase shifter, and a beam- steerable leaky wave antenna. In all cases, tunability is achieved via the application of a low-strength external bias electric field. This affects the dielectric properties of the crystal by re-orienting its molecules, the macroscopic orientation of which is denoted by a unit vector called the director. The dielectric properties of the LC-cell are characterized by its relative permittivity tensor, which is a function of the directors' orientation. The latter is determined at every point of the cell by solving a coupled system of partial differential equations (PDEs) numerically. The obtained relative permittivity tensor is input into a high-frequency full- wave electromagnetic simulator based on the finite-element method (FEM). Finally, the simulation results are analyzed and the performance and capabilities of the applications are discussed.
UR - http://www.scopus.com/inward/record.url?scp=85097839856&partnerID=8YFLogxK
U2 - 10.1063/5.0033585
DO - 10.1063/5.0033585
M3 - Conference contribution
AN - SCOPUS:85097839856
T3 - AIP Conference Proceedings
BT - Application of Mathematics in Technical and Natural Sciences
A2 - Todorov, Michail D.
PB - American Institute of Physics Inc.
T2 - 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2020
Y2 - 24 June 2020 through 29 June 2020
ER -