TY - JOUR
T1 - GS protein-coupled adenosine receptor signaling and lytic function of activated NK cells
AU - Raskovalova, Tatiana
AU - Huang, Xiaojun
AU - Sitkovsky, Michail
AU - Zacharia, Lefteris C.
AU - Jackson, Edwin K.
AU - Gorelik, Elieser
PY - 2005/10/1
Y1 - 2005/10/1
N2 - The effect of adenosine and its analogues on the cytotoxic activity of IL-2-activated NK cells was investigated. Adenosine is an endogenous ligand for four different adenosine receptor (AdoR) subtypes (AdORA1, AdoRA 2A, AdoRA2B, and AdoRA3). Increased concentrations of adenosine were found in ascites of MethA sarcoma or in culture medium of 3LL Lewis lung carcinoma growing under hypoxic conditions. We hypothesize that intratumor adenosine impairs the ability of lymphokine-activaied killer (LAK) cells to kill tumor cells. The effect of AdoR engagement on LAK cells cytotoxic activity was analyzed using AdoR agonists and antagonists as well as LAK cells generated from AdoR knockout mice. Adenosine and its analogues efficiently inhibited the cytotoxic activity of LAK cells. CGS21680 (AdoRA2A agonist) and 5-N-ethykarboxamide adenosine (NECA) (AdoRA2A/ADoRA2B agonist) inhibited LAK cell cytotoxicity in parallel with their ability to increase cAMP production. The inhibitory effects of stable adenosine analog 2-cldoroadenosine (CADO) and AdoRA 2 agonists were blocked by AdoRA2 antagonist ZM 241385. Adenosine and its analogues impair LAK cell function by interfering with both perforin-mediated and Fas ligand-mediated killing pathways. Studies with LAK cells generated from AdoRA1 -/- and AdORA3 -/- mice ruled out any involvement of these AdoRs in the inhibitory effects of adenosine. LAK cells with genetically disrupted AdoRA2A were resistant to the inhibitory effects of adenosine, CADO and NECA. However, with extremely high concentrations of CADO or NECA, mild inhibition of LAK cytotoxicity was observed that was probably mediated via AdoRA2B signaling. Thus, by using pharmacological and genetic blockage of AdoRs, our results clearly indicate the prime importance of cAMP elevating AdoR2A in the inhibitory effect of adenosine on LAK cell cytotoxicity. The elevated intratumor levels of adenosine might inhibit the antitumor effects of activated NK cells.
AB - The effect of adenosine and its analogues on the cytotoxic activity of IL-2-activated NK cells was investigated. Adenosine is an endogenous ligand for four different adenosine receptor (AdoR) subtypes (AdORA1, AdoRA 2A, AdoRA2B, and AdoRA3). Increased concentrations of adenosine were found in ascites of MethA sarcoma or in culture medium of 3LL Lewis lung carcinoma growing under hypoxic conditions. We hypothesize that intratumor adenosine impairs the ability of lymphokine-activaied killer (LAK) cells to kill tumor cells. The effect of AdoR engagement on LAK cells cytotoxic activity was analyzed using AdoR agonists and antagonists as well as LAK cells generated from AdoR knockout mice. Adenosine and its analogues efficiently inhibited the cytotoxic activity of LAK cells. CGS21680 (AdoRA2A agonist) and 5-N-ethykarboxamide adenosine (NECA) (AdoRA2A/ADoRA2B agonist) inhibited LAK cell cytotoxicity in parallel with their ability to increase cAMP production. The inhibitory effects of stable adenosine analog 2-cldoroadenosine (CADO) and AdoRA 2 agonists were blocked by AdoRA2 antagonist ZM 241385. Adenosine and its analogues impair LAK cell function by interfering with both perforin-mediated and Fas ligand-mediated killing pathways. Studies with LAK cells generated from AdoRA1 -/- and AdORA3 -/- mice ruled out any involvement of these AdoRs in the inhibitory effects of adenosine. LAK cells with genetically disrupted AdoRA2A were resistant to the inhibitory effects of adenosine, CADO and NECA. However, with extremely high concentrations of CADO or NECA, mild inhibition of LAK cytotoxicity was observed that was probably mediated via AdoRA2B signaling. Thus, by using pharmacological and genetic blockage of AdoRs, our results clearly indicate the prime importance of cAMP elevating AdoR2A in the inhibitory effect of adenosine on LAK cell cytotoxicity. The elevated intratumor levels of adenosine might inhibit the antitumor effects of activated NK cells.
UR - http://www.scopus.com/inward/record.url?scp=25444513372&partnerID=8YFLogxK
M3 - Article
C2 - 16177079
AN - SCOPUS:25444513372
SN - 0022-1767
VL - 175
SP - 4383
EP - 4391
JO - Journal of Immunology
JF - Journal of Immunology
IS - 7
ER -