TY - JOUR
T1 - Lowering mortality risks in urban areas by containing atmospheric pollution
AU - Demetriou, E.
AU - Hadjistassou, C.
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/8
Y1 - 2022/8
N2 - Objectives: Although studies collectively examining the traffic and residential heat pollutant emissions are abundant, research investigations dedicated to Cyprus are scarce. This investigation has simulated the levels of air pollutants, namely, CO, NOx, PM2.5, and PM10 and reconciled them with actual air quality measurements in Nicosia, Cyprus, during a 9-month period at an hourly resolution. To this end, several scenarios and cases were formulated to tackle emissions and minimise human mortality risks in the city. Methods: The GRAL dispersion model was used to project pollution levels. Nine different traffic scenarios were devised to estimate variations in concentration of PM2.5 and NOx under various policies, such as banning diesel passenger vehicles (PV), light duty vehicles (LDV), non-Euro 6 standards vehicles, stringent speed limits and a ubiquitous roll-out of electric passenger vehicles. Moreover, 4 distinct cases were analysed to year 2030 considering a fluctuation in traffic of ±20% whereas all vehicles conform to Euro 6 standards. Three additional policies examined the prohibition of diesel PV and LDV, 80% electric PV and outlawing fireplaces. Drawing on the findings of these scenarios and cases, the total cardiovascular and respiratory mortality rates at the capital of Cyprus, Nicosia, were deduced. Results: The most promising scenario in terms of curbing emissions was to ban non-Euro 6 vehicles and diesel PV and LDV which could contain average NOx concentration, in Nicosia, from 52.9 μg/m3 to 15.0 μg/m3. If this policy were to be implemented, it could have saved 70% of the premature deaths tied to NOx emissions. For particulate matter, banning fireplaces and abandoning non-Euro 6 vehicles could lower average concentrations from 18.3 μg/m3 to 13.1 μg/m3, saving at least 30% of the people poised to lose their lives from particulate matter risks. Conclusion: Traffic and residential heat policies are not easy to implement. However, our study has demonstrated that the most effective policies for curbing NOx emissions would be to ensure that all vehicles abide with the Euro 6 standards and, concurrently, ban diesel passenger and light duty vehicles. Lastly, phasing out domestic fireplaces appears to be the most promising solution for containing particulate matter, in 2030.
AB - Objectives: Although studies collectively examining the traffic and residential heat pollutant emissions are abundant, research investigations dedicated to Cyprus are scarce. This investigation has simulated the levels of air pollutants, namely, CO, NOx, PM2.5, and PM10 and reconciled them with actual air quality measurements in Nicosia, Cyprus, during a 9-month period at an hourly resolution. To this end, several scenarios and cases were formulated to tackle emissions and minimise human mortality risks in the city. Methods: The GRAL dispersion model was used to project pollution levels. Nine different traffic scenarios were devised to estimate variations in concentration of PM2.5 and NOx under various policies, such as banning diesel passenger vehicles (PV), light duty vehicles (LDV), non-Euro 6 standards vehicles, stringent speed limits and a ubiquitous roll-out of electric passenger vehicles. Moreover, 4 distinct cases were analysed to year 2030 considering a fluctuation in traffic of ±20% whereas all vehicles conform to Euro 6 standards. Three additional policies examined the prohibition of diesel PV and LDV, 80% electric PV and outlawing fireplaces. Drawing on the findings of these scenarios and cases, the total cardiovascular and respiratory mortality rates at the capital of Cyprus, Nicosia, were deduced. Results: The most promising scenario in terms of curbing emissions was to ban non-Euro 6 vehicles and diesel PV and LDV which could contain average NOx concentration, in Nicosia, from 52.9 μg/m3 to 15.0 μg/m3. If this policy were to be implemented, it could have saved 70% of the premature deaths tied to NOx emissions. For particulate matter, banning fireplaces and abandoning non-Euro 6 vehicles could lower average concentrations from 18.3 μg/m3 to 13.1 μg/m3, saving at least 30% of the people poised to lose their lives from particulate matter risks. Conclusion: Traffic and residential heat policies are not easy to implement. However, our study has demonstrated that the most effective policies for curbing NOx emissions would be to ensure that all vehicles abide with the Euro 6 standards and, concurrently, ban diesel passenger and light duty vehicles. Lastly, phasing out domestic fireplaces appears to be the most promising solution for containing particulate matter, in 2030.
KW - Dispersion model
KW - Nitrogen oxides
KW - Particulate matter
KW - Residential heat emissions
KW - Traffic policies
UR - http://www.scopus.com/inward/record.url?scp=85126052256&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2022.113096
DO - 10.1016/j.envres.2022.113096
M3 - Article
C2 - 35276194
AN - SCOPUS:85126052256
SN - 0013-9351
VL - 211
JO - Environmental Research
JF - Environmental Research
M1 - 113096
ER -