TY - JOUR
T1 - Machine-learning methods for computational science and engineering
AU - Frank, Michael
AU - Drikakis, Dimitris
AU - Charissis, Vassilis
PY - 2020/3/1
Y1 - 2020/3/1
N2 - The re-kindled fascination in machine learning (ML), observed over the last few decades, has also percolated into natural sciences and engineering. ML algorithms are now used in scientific computing, as well as in data-mining and processing. In this paper, we provide a review of the state-of-the-art in ML for computational science and engineering. We discuss ways of using ML to speed up or improve the quality of simulation techniques such as computational fluid dynamics, molecular dynamics, and structural analysis. We explore the ability of ML to produce computationally efficient surrogate models of physical applications that circumvent the need for the more expensive simulation techniques entirely. We also discuss how ML can be used to process large amounts of data, using as examples many different scientific fields, such as engineering, medicine, astronomy and computing. Finally, we review how ML has been used to create more realistic and responsive virtual reality applications.
AB - The re-kindled fascination in machine learning (ML), observed over the last few decades, has also percolated into natural sciences and engineering. ML algorithms are now used in scientific computing, as well as in data-mining and processing. In this paper, we provide a review of the state-of-the-art in ML for computational science and engineering. We discuss ways of using ML to speed up or improve the quality of simulation techniques such as computational fluid dynamics, molecular dynamics, and structural analysis. We explore the ability of ML to produce computationally efficient surrogate models of physical applications that circumvent the need for the more expensive simulation techniques entirely. We also discuss how ML can be used to process large amounts of data, using as examples many different scientific fields, such as engineering, medicine, astronomy and computing. Finally, we review how ML has been used to create more realistic and responsive virtual reality applications.
KW - Artificial intelligence
KW - Data-mining
KW - Gaussian processes
KW - Machine learning (ML)
KW - Neural networks
KW - Scientific computing
KW - Virtual reality
UR - http://www.scopus.com/inward/record.url?scp=85081747508&partnerID=8YFLogxK
U2 - 10.3390/computation8010015
DO - 10.3390/computation8010015
M3 - Review article
AN - SCOPUS:85081747508
SN - 2079-3197
VL - 8
JO - Computation
JF - Computation
IS - 1
M1 - 15
ER -