Mass and stiffness effects on thermal resistance at the solid-liquid interface of nanofluidic channels

Michael Frank, Michael Kio, Dimitris Drikakis, László Könözsy, Nikolaos Asproulis

Research output: Contribution to journalArticlepeer-review

Abstract

This paper investigates the effects of the wall mass, mw, and bonding stiffness, κ on the thermal resistance at a solid-liquid interface. The main observation is that the mass influences the thermal resistance independently of its effects on the theoretical harmonic frequency, √κ /mw of the walls. We show that increasing the atomic mass of the solid particles significantly increases the temperature jump at the interface. Furthermore, this effect becomes continuously more important as the value of the bonding stiffness decreases. To understand this, we study the density profiles of the walls, which shed light on their oscillatory motion. Finally, we show that the thermal resistance behaves as a fifth order polynomial of log(mwκ)

Original languageEnglish
Pages (from-to)141-146
Number of pages6
JournalJournal of Computational and Theoretical Nanoscience
Volume15
Issue number1
DOIs
Publication statusPublished - 1 Jan 2018

Keywords

  • Kapitza
  • Mass
  • Nanofluidics
  • Resistance
  • Thermal

Fingerprint

Dive into the research topics of 'Mass and stiffness effects on thermal resistance at the solid-liquid interface of nanofluidic channels'. Together they form a unique fingerprint.

Cite this