TY - JOUR
T1 - Medroxyprogesterone abrogates the inhibitory effects of estradiol on vascular smooth muscle cells by preventing estradiol metabolism
AU - Dubey, Raghvendra K.
AU - Jackson, Edwin K.
AU - Gillespie, Delbert G.
AU - Zacharia, Lefteris C.
AU - Wunder, Dorothea
AU - Imthurn, Bruno
AU - Rosselli, Marinella
PY - 2008/4
Y1 - 2008/4
N2 - Sequential conversion of estradiol (E) to 2/4-hydroxyestradiols and 2-/4-methoxyestradiols (MEs) by CYP450s and catechol-O-methyltransferase, respectively, contributes to the inhibitory effects of E on smooth muscle cells (SMCs) via estrogen receptor-independent mechanisms. Because medroxyprogesterone (MPA) is a substrate for CYP450s, we hypothesized that MPA may abrogate the inhibitory effects of E by competing for CYP450s and inhibiting the formation of 2/4-hydroxyestradiols and MEs. To test this hypothesis, we investigated the effects of E on SMC number, DNA and collagen synthesis, and migration in the presence and absence of MPA. The inhibitory effects of E on cell number, DNA synthesis, collagen synthesis, and SMC migration were significantly abrogated by MPA. For example, E (0.1μmol/L) reduced cell number to 51±3.6% of control, and this inhibitory effect was attenuated to 87.5±2.9% by MPA (10 nmol/L). Treatment with MPA alone did not alter any SMC parameters, and the abrogatory effects of MPA were not blocked by RU486 (progesterone-receptor antagonist), nor did treatment of SMCs with MPA influence the expression of estrogen receptor-α or estrogen receptor-β. In SMCs and microsomal preparations, MPA inhibited the sequential conversion of E to 2-2/4-hydroxyestradiol and 2-ME. Moreover, as compared with microsomes treated with E alone, 2-ME formation was inhibited when SMCs were incubated with microsomal extracts incubated with E plus MPA. Our findings suggest that the inhibitory actions of MPA on the metabolism of E to 2/4-hydroxyestradiols and MEs may negate the cardiovascular protective actions of estradiol in postmenopausal women receiving estradiol therapy combined with administration of MPA.
AB - Sequential conversion of estradiol (E) to 2/4-hydroxyestradiols and 2-/4-methoxyestradiols (MEs) by CYP450s and catechol-O-methyltransferase, respectively, contributes to the inhibitory effects of E on smooth muscle cells (SMCs) via estrogen receptor-independent mechanisms. Because medroxyprogesterone (MPA) is a substrate for CYP450s, we hypothesized that MPA may abrogate the inhibitory effects of E by competing for CYP450s and inhibiting the formation of 2/4-hydroxyestradiols and MEs. To test this hypothesis, we investigated the effects of E on SMC number, DNA and collagen synthesis, and migration in the presence and absence of MPA. The inhibitory effects of E on cell number, DNA synthesis, collagen synthesis, and SMC migration were significantly abrogated by MPA. For example, E (0.1μmol/L) reduced cell number to 51±3.6% of control, and this inhibitory effect was attenuated to 87.5±2.9% by MPA (10 nmol/L). Treatment with MPA alone did not alter any SMC parameters, and the abrogatory effects of MPA were not blocked by RU486 (progesterone-receptor antagonist), nor did treatment of SMCs with MPA influence the expression of estrogen receptor-α or estrogen receptor-β. In SMCs and microsomal preparations, MPA inhibited the sequential conversion of E to 2-2/4-hydroxyestradiol and 2-ME. Moreover, as compared with microsomes treated with E alone, 2-ME formation was inhibited when SMCs were incubated with microsomal extracts incubated with E plus MPA. Our findings suggest that the inhibitory actions of MPA on the metabolism of E to 2/4-hydroxyestradiols and MEs may negate the cardiovascular protective actions of estradiol in postmenopausal women receiving estradiol therapy combined with administration of MPA.
KW - Cardiovascular disease
KW - Cytochrome P450
KW - Estradiol
KW - Metabolism
KW - Progestins
KW - Vascular remodeling
UR - http://www.scopus.com/inward/record.url?scp=40849134243&partnerID=8YFLogxK
U2 - 10.1161/HYPERTENSIONAHA.107.106575
DO - 10.1161/HYPERTENSIONAHA.107.106575
M3 - Article
C2 - 18259021
AN - SCOPUS:40849134243
SN - 0194-911X
VL - 51
SP - 1197
EP - 1202
JO - Hypertension
JF - Hypertension
IS - 4 PART 2 SUPPL.
ER -