TY - JOUR
T1 - Quantitative progradation dynamics and stratigraphic architecture of ancient shallow-marine clinoform sets:
T2 - a new method and its application to the Upper Jurassic Sognefjord Formation, Troll Field, offshore Norway
AU - Patruno, Stefano
AU - Whipp, Paul S.
AU - A.-L. Jackson, Christopher
AU - Hampson, Gary J.
PY - 2015
Y1 - 2015
N2 - This article presents a new numerical inversion method to estimate progradation rates in ancient shallow-marine clinoform sets, which is then used to refine the tectono-stratigraphic and depositional model for the Upper Jurassic Sognefjord Formation reservoir in the super-giant Troll Field, offshore Norway. The Sognefjord Formation is a 10–200-m thick, coarse-grained clastic wedge, that was deposited in ca. 6 Myr by a fully marine, westward-prograding, subaqueous delta system sourced from the Norwegian mainland. The formation comprises four, 10–60-m thick, westerly dipping, regressive clinoform sets, which are mapped for several tens of kilometres along strike. Near-horizontal trajectories are observed in each clinoform set, and the sets are stacked vertically. Clinoform age and progradation rates are constrained by: (i) regionally correlatable bioevents, tied to seismically mapped clinoforms and clinoform set boundaries that intersect wells, (ii) exponential age–depth interpolations between bioevent-dated surfaces and a distinctive foreset-to-bottomset facies transition within each well, and (iii) distances between wells along seismic transects that are oriented perpendicular to the clinoform strike and tied to well-based stratigraphic correlations. Our results indicate a fall in progradation rate (from 170–500 to 10–65 km Myr−1) and net sediment flux (from 6–14 to ≤1 km2 Myr−1) westwards towards the basin, which is synchronous with an overall rise in sediment accumulation rate (from 7–16 to 26–102 m Myr−1). These variations are attributed to progradation of the subaqueous delta into progressively deeper waters, and a concomitant increase in the strength of alongshore currents that transported sediment out of the study area. Local spatial and temporal deviations from these overall trends are interpreted to reflect a subtle structural control on sedimentation. This method provides a tool to improve the predictive potential of sequence stratigraphic and clinoform trajectory analyses and offers a greater chronostratigraphic resolution than traditional approaches.
AB - This article presents a new numerical inversion method to estimate progradation rates in ancient shallow-marine clinoform sets, which is then used to refine the tectono-stratigraphic and depositional model for the Upper Jurassic Sognefjord Formation reservoir in the super-giant Troll Field, offshore Norway. The Sognefjord Formation is a 10–200-m thick, coarse-grained clastic wedge, that was deposited in ca. 6 Myr by a fully marine, westward-prograding, subaqueous delta system sourced from the Norwegian mainland. The formation comprises four, 10–60-m thick, westerly dipping, regressive clinoform sets, which are mapped for several tens of kilometres along strike. Near-horizontal trajectories are observed in each clinoform set, and the sets are stacked vertically. Clinoform age and progradation rates are constrained by: (i) regionally correlatable bioevents, tied to seismically mapped clinoforms and clinoform set boundaries that intersect wells, (ii) exponential age–depth interpolations between bioevent-dated surfaces and a distinctive foreset-to-bottomset facies transition within each well, and (iii) distances between wells along seismic transects that are oriented perpendicular to the clinoform strike and tied to well-based stratigraphic correlations. Our results indicate a fall in progradation rate (from 170–500 to 10–65 km Myr−1) and net sediment flux (from 6–14 to ≤1 km2 Myr−1) westwards towards the basin, which is synchronous with an overall rise in sediment accumulation rate (from 7–16 to 26–102 m Myr−1). These variations are attributed to progradation of the subaqueous delta into progressively deeper waters, and a concomitant increase in the strength of alongshore currents that transported sediment out of the study area. Local spatial and temporal deviations from these overall trends are interpreted to reflect a subtle structural control on sedimentation. This method provides a tool to improve the predictive potential of sequence stratigraphic and clinoform trajectory analyses and offers a greater chronostratigraphic resolution than traditional approaches.
M3 - Article
VL - 27
SP - 412
EP - 452
JO - Basin Research
JF - Basin Research
IS - 4
ER -