Two-equation and multi-fluid turbulence models for Richtmyer-Meshkov mixing

Ioannis W. Kokkinakis, Dimitris Drikakis, David L. Youngs

    Research output: Contribution to journalArticlepeer-review


    This paper concerns an investigation of two different approaches in modeling the turbulent mixing induced by the Richtmyer-Meshkov instability (RMI): A two-equation K-L multi-component Reynolds-averaged Navier-Stokes model and a two-fluid model. We have improved the accuracy of the K-L model by implementing new modifications, including a realizability condition for the Reynolds stress tensor and a threshold in the production of the turbulence kinetic energy. We examine the models in the one-dimensional (1D) form in the (re)-shocked mixing of a double-planar air and sulfur-hexafluoride (SF6) interface of the Atwood number |At| ≃ 0.6853. Furthermore, we investigated the models' accuracy to RMI-induced mixing of a (re)-shocked planar-inverse chevron air-SF6 interface. Relevant integral quantities in time, as well as instantaneous profiles and contour plots, are used to assess the models' accuracy against high-resolution implicit large eddy simulations. The proposed modifications improve the efficiency of the K-L model. The model is designed as a simple model capable of capturing the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov flows. The two-fluid model remains more accurate but is also computationally more expensive.

    Original languageEnglish
    Article number074102
    JournalPhysics of Fluids
    Issue number7
    Publication statusPublished - 1 Jul 2020


    Dive into the research topics of 'Two-equation and multi-fluid turbulence models for Richtmyer-Meshkov mixing'. Together they form a unique fingerprint.

    Cite this