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Abstract

Let A be an equilateral cone i@ with vertices at the complex numbersz@, zg and rigid base\f
(Section 1). Assume that the positive real semi-axis is the bisectrix of the angle at the origin. For the
baseM of the coneA we derive a Carleman formula representing all those holomorphic functions
f € H(A) from their boundary values (if they exist) @ which belong to the cIas&/’H%,,(A). The
cIassNH}VI(A) is the class of holomorphic functions imwhich belong to the Hardy clag¢! near
the baseM (Section 2). As an application of the above characterization, an important result is an
extension theorem for a functione L1(M) to a functionf e N'H3, (A).
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1. Introduction

Three noncollinear points, @1, zz in the complex plane define a corewith vertex at
the origin whose width ig-, n = 2, 3,4, ... The coneA is equilateral |ﬂz1 0= |z2 0.
Any simple, Ahlfors regular curve/, with parametrizatiors (¢), connecting the vertices
zg, zg, generating simply connected bounded region, is called base of the\céive small
€ > 0the setEy . = (M N D23, €) U (M N D3, €)) is called thee-end set ofM (we
implicitly assume here thalD(zg, €)N D(zg, €) = 0). Thee-end set ofM is called flat if
the slope arg’(r) is a monotone (increasing or decreasing) function of the parameter
The baseM is called rigid if it has flak-ends for some > 0 and satisfies the following
two conditions:

(i) M C D(xp, Ry), wherexy = M N (0, +00) and Ry =[xy — 23,
(i) .‘Hzl <max. .y e =xpy.

Geometrically the above conditions mean tivatcannot approach the origin too close,
that M cannot be a segment, that circles, centeredaand of radiug¢ — xuy|, ¢ € Ep e,
intersectM at exactly two points. We assume, for reasons of simplicity, that the positive

real semi-axis is the bisectrix of the angf%()z% at the origin. From now on we assume
that A denotes an equilateral cone with vertex at the origin and rigid bfséDefine the
holomorphic function

d()=¢, zeA. (1.2)

The functiong is holomorphic in a neighborhood af and has the following two proper-
ties:

(1) ¢p(zx)=1ae.forzrcdA\ M,
(2) |¢(z)| >1forz e A.

Actually, if z belongs to the siszél, argz = 5 of the coneA, then expz") =
exp(r" cognd) + ir"sin(ng)), 0 < r < [29], 6 = . This implies that|exp(z")| =
exp(r” cogn)) = exp(r" cogn7)) = 1. Similarly, one can show thaexpz")| = 1,
whenever

z:re_’%, 0<r« ’zg].

If ze Athen—Z- <6 < 2. Itfollows from this that exp(z")| > 1. The properties (1) and
(2) above and the fact tha;te H>(A) characterize this function as a quenching function
off the sideM for the coneA [1-4].

Let f € EX(A) (see Definition 2.1); then for everye A andm € N we have, by a
theorem of V. Smirnov (1932), that

¢ @ [ f©)"QD)

2mi -z
dA

fl2)= 1.2)
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F@) (&L ym 1 F@) (& ym
FOGH" de + / & dc, (1.3)

T 2mi {—z 27 {—z
M IA\M
whereg (z) is defined by (1.1).
Taking the limitm — oo one has a variation of the origin@arleman formuld1],
FOEE™
o= im = [ LW, (1.4)

m—>oo 27'” L—z
M

A posteriori, the convergence in (1.4) is uniform over the compact subsets of

We remark here that the quenching function is not unique. On one hand it is always
possible to obtain it by solving the corresponding Dirichlet problem, on the other hand this
approach is not explicit enough (see however [4]). Sometimes, one can obtain the quench-
ing function ad-hoc, as is the case here. Other such cases (and their multidimensional
analogues) were studied in [2,3].

The first sections of the present paper are devoted to the description of the class of
holomorphic functions in the cond which are representable by the Carleman integral
representation formula (1.4). The crucial Lemma 3.6 is a nontrivial refinement of the sim-
ilar argument in [4].

As a main application we will state an extension theorem (see [9]). In general, one is
looking to find necessary and sufficient conditions for a funcrfoe LY(M) to be ex-
tendable into an analytic function iy, belonging to the clas&fH (A) (Section 2). Such
results were obtained in [2—4] for other types of simply connected domains. However, every
separate case seems so distinct that until now we were not able to formulate a general type
of theorem to cover all the cases.

2. Theclass of functionsrepresentable by Carleman integral representation formula

For the above cone& and the quenching functiop defined by(1.1) we consider the
domains

Ar={ze A ()| >1+7}, (2.1)
where T > 0, t — 0. Geometrically, the domaing\; are bounded by hyperbolas
r'"cognd) =In(1+ 1), # = £7-, and the basa/. The vertex of the hyperbola is at the
point¢or = (In|1+ r|)%. Furthermore, if

M, =Mn{zeC: |p@)|>1+1},

Ar={ze Al |p@@)|=1+1} (2.2)

thend A, = M. U A;.

Let {7,} be a decreasing sequence of positive numbers converging to{@A.[f is
the sequence of the domains defined as in (2.1) then it is an Ahlfors regular exhaustion
of the domainA attached to the bas#. By Ahlfors regular exhaustion of the cong
attached to the base we mean that the sequence of the doméifng } is increasing, that
isA;, C A, foreveryn eN,0A,, — dA,9A,, NdA =M, C M and satisfies

Tn+1
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1) A=, A4,

(2) the boundary A-, is an Ahlfors regular curve, that igd A, N D(b,r)) < Cr, where
D(b, r) is a disk of radiug-, and centeb € 9 A, , [ is the length of the curveA,, N
D(b, r), and the constart is independent ob [4].

Furthermore, there is a sense of subordination of the exhaustign of the domain
A to the quenching functiop off the setM. To be more precise, one has that for every
z € Ay, fixed, limy, o0 12781 = 0 uniformly in¢ € A, \ M, . Indeed, ifc € 9 Ay, \ Mr,
then|¢ (¢)| = 14 t,. On the other hand, from the definition af, we havel¢ ()| > 1+ 1,
whenever; € A,.

Next, we recall the following

Definition 2.1. A function f(z) holomorphic inA belongs to the clasg?(4), p > 0,
if there exists a sequence of curvgs in A converging tod A, in the sense thafy,,}
eventually surrounds each compact sub-domain afuch that

/}f(z)|” ldz| < C1,
Ym
where(1 is independent of:.

Hence, if a functiom € El(A,n) thenh has angular boundary values, denoted also
by i, almost everywhere ohA,, and

sup/ |h(z)|dz| < oo,
m
Ym,n

wherey,, , are rectifiable curves converging da\;,. Now we are ready to introduce the
class of holomorphic functions that belong to the Hardy ctd$siear the basas [2-4].

Definition 2.2. We say that a holomorphic functiofi € H(A) with angular boundary
values defined almost everywhere dh(denoted also by) belongs to the Hardy class
H* near the basé/ and denote this class by}, (A) if f € EX(W,), where{W,}, is
an Ahlfors regular exhaustion of attached taVf.

Remark 2.1. It is clear that the above definition does not depend on Ahlfors regular ex-
haustion ofA attached taVf [4]. This allows us to consider the particular Ahlfors regular
exhaustion of A, } of A attached taVf and subordinated to the quenching functipn
This approach was already used in [2—4].

Example 3.1 will show thatH3,(A) # EX(A).
Next we state a characterization theorem (in the spirit of results in [2—4]).

Theorem 2.1. Let M be the base of the con& opposite to the vertex at the origin agd

defined by(1.1), be its quenching function. Lgtbe a holomorphic function in the cont

having angular boundary values almost everywherdbdenoted also by and satisfying
f € LY(M). Then for the Ahlfors regular exhausti¢a,, } defined by2.1) one has
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@QIffe NH%,,(A) then the relatior(1.4) holds and the convergence is uniform over the
compact subsets.
(2) If (1.4)holds point-wise therf € EX(A;), T >0, A, # .

Proof of the first part. Since f € NHMA), we take the Ahlfors regular exhaustion
{A,}n (constructed above) of which is attached to the bagé and is subordinated to
the quenching functiop (z) = ¢%". Let z € A be a fixed point. Then € A, for somen.
Hencef e El(A,n) and therefore by Cauchy formula we have

o) di / o) de
07—zt | T O —2

1
f(z)=% / £ (2.3)

whereM,, = M NdA,,. The second integral tends to Oras— oo because the exhaustion
{4z, }, is subordinated to the quenching functipnThus

1 S de
lim —— | f(©)¢" ()¢ (Z)g—

m—o0 271
Mo,

m d m d
im _(/f@qb (r:)T;Z_ / ! (;)Tzz)
M\Mq,

P"(2) ¢ P (2) ¢

We claim that the second integral tends to Gras> co. Indeed, it is enough to show that

for everyz € A,, fixed, one has lim_ | ,,,(§)| =0 for everyz € M \ My, . To show this,

one observes from the construction of the exhaustion, sined/ \ M, , that; € A,

for somer, < t7,. Hence|¢(2)| > 1+ 1, > 1+ 7, = |¢(¢)]. Thus, the Carleman mtegral
representation formulél.4) holds. The uniform convergence over the compact subsets
follows. This concludes the proof of the first parto

The rest of the proof will occupy the next section.

3. Proof of the second part of Theorem 2.1

Our first step is to rewritél.4) in an equivalent way. We observe that

Gepm a1 SO\t (@) \" 2 $(0) — 6(2)
= o) UURTIE ) R D2 W
(< ;—z+[(¢(z>) +<¢><z>) e ]¢<z>(;—z> (3-1)

The relation (3.1) implies the following

Lemma 3.1. Let f be a function holomorphic in the con# with the property that its
boundary values o/ belong to the clasd.!(M). If f is representable byl.4) then
point-wise

d .
foo L /f(;)c Z CH 52

m=0 ¢m+1(z)
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where the functions

om(2) = /f(§)¢ (c)w e, zeA,

are analytic inA for everym =0,1, 2, ....

Keeping the notation of the above lemma, observe that for everny the function

N gm(2) f(c)
G) = = f()—— d¢
2 iy e

is holomorphic inA. This implies that for everwg € A there exists an > 0 so that

@)
G(2) = Z GWO T ( —wey, e Dwo,n.
izo i!
We will show that for particular choices afg (which are sufficiently close ta,,) this
radiusr is sufficiently large to exten@ across the bas¥f. That is, we will prove that base
M = D(wo, r) N9 A and therefor&j has analytic continuation across the afc
In order to accomplish this we will follow the approach developed in [3]. As a first step,
we expand into power series fn— wg the functlons¢f;,;1(11()) m=0,1,2,...,within the
same disk, whose center will be chosen conveniently. Then in (3.2) one has series of power
series and the main difficulty is to interchange the order of summation (no known type
conditions are in generally present).

Definition 3.1. A point wg € (0, 00) N A is calledadjacentto M if for every ¢ € Ey ¢ the
circle centered ag and radiugwg — ¢| intersectsM at exactly two points.

Remark 3.1. The above condition forces the adjacent points to be sufficiently closg to
This condition will be used in the proof of Lemma 3.6.

Lemma 3.2. For the coneA, let wg be adjacent ta. Then, for everyn € N, the series

o
¢" (@) =€"" = Ymug.i(z — wo) .
i=0
converges, whenevere D(wo, Ryy,), Where the radiusk,,, is independent ofz and is
equal toR,,, = |wo—zl| Furthermore,

MmaRwO
i
Ry,

|Vm,wo,i| X s (33)

whereM, g,, =MaX ¢ g g, 1¢" (2]

Proof. The functiong™ (z) is entire for everyn =0,1,2,.... O
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Remark here that fom = 1 the Taylor coefficients ,,; of the above power series
correspond the Taylor coefficients of the power series expansion about thevpaifithe
functiong (z) = ¢*". The next lemma expresses the local division property.

Lemma 3.3. For the coneA, let wg € A be adjacent to the bas#/. Then forz €
D(wo, Ry,) and¢ € M one has

6@ =9&) _$7P0) - 3 =0 Viwe.i (¢ — wo))

: —wo) L. 3.4
—¢ ¢ — wo) (¢~ wo) (34)

i=1

Proof. Recall that from the previous lemma we have that for evegyD (wo, Ry,) the
following expansion is validy (z) = Z?O:o YLwo,j(z — wo)’ . Furthermore, one has for
every; € M C D(wo, Ry,) that

[e.e]

¢() =) ((z—wo)" — (¢ —wo)")
1—¢ —gyl,wo,t 1—¢

1 [es] i—1 - . .

= (Z(z — O)¥1up.i <Z(z —wo) (¢ - wo)f>>

2=¢\i% j=0
_ o) — Y1,w0,0 ¢ () — Z}:O Y1,wo,j ¢ - wO)j _ N
T —we (¢ — wp)? @m0yt
Sy — o) '
(&) =i Zon, 0,{(4 wo) c—woy L., 3.5)
(¢ — wo)!

after regrouping. The regrouping is possible because on one handfdf the inequality
Fuwo = MaX{|¢ — wol, |z — wol} < Ry, implies

Y —wo)' (¢ —wo) | <
j=0 j=0

i-1 i
(z = wo) T (¢ — wo) | Ci(ruwp) Tt

and on the other hand one has the relation (3.8).
We state the following lemma, without proof since its proof is elementary.

Lemma 3.4. For the coneA, let wg € A be adjacent to the bas®. Then, for everyn ¢ N
andz € D(wo, Ry,) one has the equality

$() —9()

1 m & i
0@ =5 [ F©8" 0TI de = 3 i = wo)' (3.6)
M i=0
The following lemma we need is taken from [4]. We include the proof for reason of

completeness.
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Lemma 3.5. Let £2 be a bounded, simply connected domain with Ahlfors regular bound-
ary. LetI" C 352 be a curve, whose lengthiI") is strictly smaller than/(8£2). If £2" is

any simply connected sub-domain@fwith Ahlfors regular boundary containing a curve

y C I' then the Cauchy type integral

h(z)=2—m ;’bﬁdr 7€, ¢ LX),
r

belongs to the clasg?(£2’) for every0 < p < 1.

Proof. Since the boundaries of the domaifs 2’ and 2 \ £2’ are Ahlfors regular,
Smirnov theorem holds, that is, the Cauchy type integrals dver and overI” \ y of
the L1-function ¢ belong to the corresponding Hardy clag2 for every O< p < 1. The
original result was proven for the unit disk by V. Smirnov (1928) [10, Theorem 3.5], but
was extended to any simply connected domain with Ahlfors regular boundary in [5-7].
If for ¢ € LY(I") andz € £2,
¢(1) P ) ¢(1)

1
h@=s— | ——di=c— [ — 2 dr =h1(2) + ha(a),
(2) i | T2 27” t_z Zm/ 1(z) + h2(2)

r I'\y
thenhy € EP(£2') for every O< p < 1. Furthermore, it is clear that for every<Op < 1
one has thaky € EP(2) N EP (2 \ £2'). Let {£2,}, be a sequence of domains such that
2, C 241,082, — 2 andfmn |h2(2)|P |dz] < M1 < co. Such a sequence of domains
exist from the fact thak, € E”(£2). Thus, it follows with the aid of Theorem 10.3 in [8]
that

f |h2(z)|p|d2| < Mo < o0,

3(2:\82))
where$2, = 2’ N §2,, for everyn.
Furthermore
ho(t ho(t ho(t
/ﬁd _/ 20 4 / h20 41z,
t—z t—z t—z
a2, 982, 3(£2,\2;)
Thus

/ |h2(2)|” 1dz] < M1+ M.

a2
That is, by Definition 2.1k, € EP(£2') for every O< p < 1. This concludes the proof of
the lemma. O

Remark 3.2. The above Lemma 3.5 covers the small gap present in the proofs of Theo-
rem 2.2 in[2] and in Theorems 2.1 and 2.8 in [3]. In those papers the authors assumed that
for the domains with Ahlfors regular boundaries the two definitions of the Hardy classes
were equivalent. That is, while working with the Hardy classes in the sense of Smirnov,
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they used the definition through the harmonic majorization in order to prove the claim of
the above lemma. Otherwise the proofs present in [2,3] are correct.

Finally, we have the following crucial lemma.

Lemma 3.6. For the coneA, let the pointwg be adjacent to the ard/. Let alsoG(z) be
the holomorphic function defined by the point-wise summation for ever:

G(z) = Z &m(2)

m+1 .
@)
Then
k
GO &
X! = Z Zym+l,wo,j)\M,n1,k—j-
’ m=0 j=0

Furthermore

k!
limsup ——— > Ry,
SPGB (ug) = o

Proof. By Lemmas 3.3-3.4 for evemt € N the functionsg,, and¢~ "+ are expanded
into the power series in the same diBKwo, Ry,). Therefore forz € D(wo, Ry,) the
following holds:

0 k
¢ir1(1z()z) = Z(Z Vm+1.wo,j?»M,m,k—j) (z — wo)*. (3.7)

k=0 \ j=0

On the other hand, the fact that the functi@(x) is analytic inA N D(wo, Ry,,) implies
that forr > 0, sufficiently small, one has that

x© gk
G(z) = ](2% %(z —wo)f, ze D(wo,r).

Denote by

|
p=limsup} kk—
k G® (wo)

the radius of convergence of the power series representing the fuightioraround the
point wo.
By (3.7) one has that

o oo
m (W
G(wo) = Z i_élio) = Z Bm,0, Whefeﬂm,o = Vm+l,wo,0)\M,m,0~
¢ (wo) A=
Again, by (3.7) and the point-wise equality foE D (wg, p),
G(z)—G 1 & m
(2) = G(wo) _ Z( gm@ ﬂm,o>

_ -, m+1
z—wo 72— wo =\ " T(2)

m=0
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evaluated at = wg, one deduces that

00 1
g/(wO) = Z ,Bm,l’ Whereﬂm,l = Z Vm+1,w0,j)¥M,m,1—j~

m=0 j=0
We repeat the same procedure for eviery 0, 1, 2, 3, ..., and obtain that

g(k) e’} k
o (wo) = > Bk WhereBu = Yitiuwo i Mmi—j-
’ m=0 j=0

It follows directly from the above that

(k)
g (wO) Z(ZVerlwoj)hMmk ])

j=0

Or equivalently, in the disl (wg, p) one can interchange the order of summation just from
point-wise convergence:

o o0 o0 o
> (Zﬂm,k<z - wo)k> = Z( > ﬂm,k) z —wo)t. (3:8)
m=0 \ k=0 k=0 \m=0

We claim thato = Ry,,.

Actually, for almost all O< r < Ry, such that D(wo,r) N M = {bg,, b()'r} is a two
point set (Definition 3.1 of the adjacent points guarantee the existence of- sugtich
actually are sufficiently close t&,,,), the functionG(z) has angular boundary values at
the two pointsibo,r, by . }. If

1 d
Fi(o) = — f&d¢

2mi -z’
M

€A,

the existence of angular boundary valuesMnfor the functionG(z) follows from the
identity G(z) = f(z) — F+(2), z € A, and the fact that the Cauchy type integrals over
Ahlfors regular curves of. functions belong to the Hardy clag®’, 0 < p < 1 (see the
first paragraph of the proof of Lemma 3.5). Denote the angular boundary valggesatof
these points by (bo ), g(bé,’r) correspondingly. These coincide with minus the angular
boundary value of the exterior Cauchy integral

Cr oL [f@d

27[1' I—w’
M

€ A€,

almost everywhere, since for the boundary valuegpabf f it holds that f(zg) =
F1(z0) — F_(z0). (A detailed treatment for the boundary values of Cauchy type integrals
along Ahlfors regular curves, can be found in [7] and [10].) Thati$, is the pseudo-
continuation ofG on the ard D (wo, r) N A°. On this arc, and near the poirits,, b6,r we

take two pointsio,,, d(’),r correspondingly. Join the poinks ,., b(’)’r by any smooth, nontan-
genttoM, simple curvé lying in A and leaving the poiniyg to the left. This curve divides
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the diskD (wo, r) into two disjoint simply connected domaitig;, £22 having Ahlfors reg-
ular boundary and such thap € £21 C A. Then

321 = (dD(wo, r) N A) UL, 3822 = (9D (wo, r) N A°) UL,
Here we would like to note that from the definition of the adjacent pois®s,\/ C A€, and
hence the part ¥/ with endpointsdyg ,, bé),r is a subset of2,. The fact that the functiog

has angular boundary values at the pobis, bg,r implies thatG € H*°(£21). Therefore,
for everyk € N one has that

Q(k)(wo) / G()deg
T 27 ts

— wo)k"‘l
Furthermore,
1 g@)de M,
A X B 3.9
2ri / (é' _ wo)kJrl rk+1 ( )
9D (wo,r)NA

whereM, = max|G(¢)|, ¢ € dD(wo, r) N A.

We modify the boundary of the domai®; by adding to it the arcég -, do -, b{)’,, dé»r
contained im D (wo, r) N A€. As usual, the orientation of arcs is given by the order of its
endpoints. Then for the union of arcs

L=do,bo, U (3D(wo,r) N A)UbY,.dj, Udy,. by, Ul Ubo,,do,

one has
g<k>(wo) / Gg@de / G()d¢
2w ) ¢ —wo)tl T 2ni ) (¢ —wotT
where for the mtegratlon af over the part ofZ outside the unit disk we use its pseudo-
continuation. Thus
1 / g(¢)d¢

2mi (¢ — wo)k+L

m;

< Hr (3.10)

do.r b0, U3 D(wo, )NA)UbG ,.dj

whereM =max|G(¢)|, ¢ € do,,bO, U (8D (wo, r) N A) UbOr’dOr

Next, we will show that over the pa.nbr, bo,UIlU b{)r, d0r of 9£22 one has similar
estimate. Actually, for every: € N the function

gm (%)
¢ (E)
since it is analytic in the disk (wo, R,,,) containing properly the closure 6f,. Therefore
foreveryk=0,1,2,...,
8m ()

1 o
— L@)kdé‘zo, forallm=0,1,2,....
(¢ — wo)
2

€ H(822),
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Hence for everyn =0, 1, 2, ... and for everk =0, 1, 2, . .. the following holds:
gm (%) 8m(5)

1 ") 1 / ")
il OO g = — A VIS 3.11
2ni / € —woF ©° = 2 € —woF *° (311)
do,rbo,rUIUbY g, dg, do.s

Furthermore, the definition of the quenching functipim (1.1) and the constru’g:tion of the
exhaustion ofA (see (2.1)), imply that for every/ € M one has thafip (¢')| < e*m. On the
other hand for the point&c’,’r, do,r of the circled D(wo, r) which are sufficiently close to

the point{x € R: x > x3} N dD(wg, r) one has that for every dm,, the inequality

| (2)| > e“T< holds for some > 0. This is possible because the adjacent points are close
to xj, from below (see Remark 3.1). Thusgife M and¢ € dﬁ,r then

|¢>(C)I -1 (3.12)
(&’ )I
whereCy, is a constant. Thus far € dﬁ,r,
gm () ’ m/
<A »|dy,
()| < Amaa” [ 1£0)]dy
M
where
— 2C
PO 0| o pr = —— 2 hereCrax= max_[#(0)].
{—y diSt(dé’r,do,r, M) tedy,.do,
This implies that
gm+(1§')
¢'” (C)
< Q.
Z f 1€ —wo g %

do, dOr

Thus for almost every e d(’lr, do,r and for everyk € N the sum

e’} grig{)
")
@)=y —F—
k(@) Z (¢ — wo)k-‘rl
m=0
is well-defined continuous, bounded function and
gmg-w)
¢m+ (w)
/ lI/k(w)dw—z / w0 — wo)k+1 dw.

d(/),,der dO,r dOr

In order to interchange the order of integration and summation in the sum of the left-hand
side of (3.11) over one uses Egoroff theorem. Over the rest of the curve the integral of
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—F_, by changing the contour of integration, is equal to the integral o@;n,%‘fn’i(fgz).
Thus, abusing slightly the notation, one has

00 gmg-w)
¢m+ (w) _ C
m=0 _____ — _—
do r.bo UIUDY . dy, dy,do,r

for some constant > 0. Combining (3.10), (3.13) we obtain
g

kU T okt

wherec’ > 0 is a suitable constant. It follows that the corresponding power serig& pf
aboutwg has radius of convergence at leasButr — R,,, from below, thus we get that
the radius of convergence for the power serie§@h aboutwy is at the least equal tB,,.
Summarizing, it implies that fos; = Y ", Bx.; one has

D Biz—wo) =) Builz—wo)
i=0

i=0m=0
=ZZ(ZV’"+1UJ0])“M”’[Z ]>(z—wo)’
m=0i=0
_ o " (¢) ¢(§)—¢(Z)
_mlinoozr[ /f(c)d)m—s—l() ¢ —z é.»

whenever; € D(wo, Ryo) NA. O

The last lemma implies that minus the exterior Cauchy type integral which is equal to

—F—(Z)=—% f(_;l
M

de, (3.14)

whenever; ¢ A, can be continued analytically through the openicThis follows from

the fact thaiG(z) = — F_(z) almost everywhere o and thatG(z) has analytic continu-
ation across the ar®. This means for the radiug,,, = |z(1) — wo| the functiong can be

expanded into the power series in the di3kwo, Ry,), that is

o0 _ 0]
G@) =Y wmiz—wo), z€D(wo, Rug), i = g (o), (3.15)

i!
i=0

At this point we conclude the proof of the second part of Theorem 2.1.

Proof. Itis enough to show that for everye A one has that
f&)dg

f@= Zni + g(2), (3.16)
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whereg(z) is holomorphic function which has analytic continuation acrdgsThat is,
there exists open, bounded, connectedl$etontainingM and satisfyingdU N M =
{z(l), zg}, andg e H(A U U) such that(z) = g(z), z € A. To be more precise, Lemma 3.5

implies thatF, (2) = 5% [, 1§ LO% helongs toEP (A,) for everyp < 1 and obviously the

function g(z) is holomorphlc mA . These two facts, the observation that L1(9A,)
for almost allt > 0 and two-fold application of the Smirnov theorem is the essence of the
proof of Theorem 2.8 in [3] (even though it was proven there for different type of simply
connected domains). Thus the conclusion of Theorem 2.8 from [3] is valid in this case also.
Hence (3.16) implies the second part of Theorem 2.1.

Actually, Lemma 3.1 and relation (3.2) imply that in order to prove the last part one
needs to show that the holomorphic function, defined as a point-wise limit,

g<>—2¢iﬁ(lz())—f(>—— {(—“d; ‘e,

can be continued analytically across the openMrcLemmas 3.2-3.4 show that every
term ¢§n’1(f()) of the above series is expanded into a power series about an adjacent point
wo in a disk of common radiu® (wg, Ry,). FurthermoreR,,, is smaller than the radius

of convergence for evemt. Lemma 3.6 shows that in the digk(wo, R,,,) the sum of the

power series that represent the terﬁiﬁ@ is equal to the power series, whose coefficients

are the sums of coefficients of the same order, in the same disk. That is the changing of
summation order is established by Lemma 3.6.
Therefore, for; € A,

f(z)=F+(Z)+Q(z)=§ +3G(2),

f()d¢

{—z
where the holomorphic functiofi(z) has analytic continuation across the afcFrom the
discussion above one concludes the proof of Theorem 21.

Example 3.1. The following example shows thm’H}l(A) # EY(A). If d € A is such
thatd—! € 9 A\ M then the functiory (z) = 372 o(d2) = 1_—1dz, z € A, belongsto the class

of holomorphic functions representable by Carleman formula (1.4) but does not belong to
the Hardy spac&l(A).

4. An extension theorem

In this section the cond and its bas@/ are as in the previous sections. For the quench-
ing function¢ defined by(1.1) we consider the sequence of functions

om(0) = ff(g“)df"({)w & m=0123,.... @.1)

From the definition of the sequengsg, (z)}» follows that these functions are holomorphic
everywhere irC \ M. One can show thaf, (z) is analytic inD(wo, Ry,) for every point
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wo € A adjacent to the bas#f (see Lemma 3.4). The size of the diBKwo, Ry,) does
not depend om: and the radius is equal ®,,, = |wg — z(1)|. Therefore, for everyn one
has that

(lj{i—fgz) =Y Bmuoi@ —wo). 2 € D(wo. Ru). 4.2)
=0
(Iimlsu MBmwotl) > Rug (4.3)

Next, for everyl € N we define the sequence of coefficients

ﬁl = Z ,Bm,wo,l- (44)
m=0

Now we are ready to formulate an extension theorem. The proof of this theorem goes along
the steps of the proof of Theorem 2.1 (the second part), but in reverse order and therefore
is omitted.

Theorem 4.1. Let M be as before angt € L1(M). If for some adjacent pointg € A,

(lim sup18/] )_1 > Ruy, (4.5)
)

and the equality

Y Buiz—wo) =Y iz —wo) (4.6)
=1

m=01[=1

holds forz € AN D(wo, Ryy,), thenf extends to a functio@® holomorphic inA belonging
to the class/\/Hﬁl(A). Furthermore this extension is defined by

o= tim L [© f@de @

m=oo2mi | ¢"(2) ¢ —z
M

whenever, € A. The convergence is uniform over the compact subsets of
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