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Abstract

Let ∆ be an equilateral cone inC with vertices at the complex numbers 0, z0
1, z0

2 and rigid baseM
(Section 1). Assume that the positive real semi-axis is the bisectrix of the angle at the origin.
baseM of the cone∆ we derive a Carleman formula representing all those holomorphic func
f ∈H(∆) from their boundary values (if they exist) onM which belong to the classNH1

M
(∆). The

classNH1
M

(∆) is the class of holomorphic functions in∆ which belong to the Hardy classH1 near
the baseM (Section 2). As an application of the above characterization, an important result
extension theorem for a functionf ∈ L1(M) to a functionf ∈NH1

M
(∆).
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1. Introduction

Three noncollinear points 0, z0
1, z

0
2 in the complex plane define a cone∆ with vertex at

the origin whose width isπ
n

, n = 2,3,4, . . . . The cone∆ is equilateral if|z0
1−0| = |z0

2−0|.
Any simple, Ahlfors regular curveM , with parametrizationζ(t), connecting the vertice
z0

1, z0
2, generating simply connected bounded region, is called base of the cone∆. For small

ε > 0 the setEM,ε = (M ∩ D(z0
1, ε)) ∪ (M ∩ D(z0

2, ε)) is called theε-end set ofM (we
implicitly assume here thatD(z0

1, ε) ∩ D(z0
2, ε) = ∅). Theε-end set ofM is called flat if

the slope argζ ′(t) is a monotone (increasing or decreasing) function of the paramet .
The baseM is called rigid if it has flatε-ends for someε > 0 and satisfies the followin
two conditions:

(i) M ⊂ D(xM,RM), wherexM = M ∩ (0,+∞) andRM = |xM − z0
1|,

(ii) 	z0
1 < maxζ∈M̄ 	ζ = xM .

Geometrically the above conditions mean thatM cannot approach the origin too clos
thatM cannot be a segment, that circles, centered atxM and of radius|ζ − xM |, ζ ∈ EM,ε ,
intersectM at exactly two points. We assume, for reasons of simplicity, that the po

real semi-axis is the bisectrix of the anglêz0
10z2

2 at the origin. From now on we assum
that∆ denotes an equilateral cone with vertex at the origin and rigid baseM . Define the
holomorphic function

φ(z) = ezn

, z ∈ ∆. (1.1)

The functionφ is holomorphic in a neighborhood of∆ and has the following two prope
ties:

(1) |φ(z)| = 1 a.e. forz ∈ ∂∆ \ M ,
(2) |φ(z)| > 1 for z ∈ ∆.

Actually, if z belongs to the side|z1
0|, argz = π

2n
of the cone∆, then exp(zn) =

exp(rn cos(nθ) + irn sin(nθ)), 0 � r � |z0
1|, θ = π

2n
. This implies that|exp(zn)| =

exp(rn cos(nθ)) = exp(rn cos(n π
2n

)) = 1. Similarly, one can show that|exp(zn)| = 1,
whenever

z = re−i π
2n , 0� r �

∣∣z0
2

∣∣.
If z ∈ ∆ then− π

2n
< θ < π

2n
. It follows from this that|exp(zn)| > 1. The properties (1) an

(2) above and the fact thatφ ∈ H∞(∆) characterize this function as a quenching funct
off the sideM for the cone∆ [1–4].

Let f ∈ E1(∆) (see Definition 2.1); then for everyz ∈ ∆ andm ∈ N we have, by a
theorem of V. Smirnov (1932), that

f (z) = φ−m(z)
∫

f (ζ )φm(ζ )
dζ (1.2)
2πi
∂∆

ζ − z
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= 1

2πi

∫
M

f (ζ )(
φ(ζ )
φ(z)

)m

ζ − z
dζ + 1

2πi

∫
∂∆\M

f (ζ )(
φ(ζ )
φ(z)

)m

ζ − z
dζ, (1.3)

whereφ(z) is defined by (1.1).
Taking the limitm → ∞ one has a variation of the originalCarleman formula[1],

f (z) = lim
m→∞

1

2πi

∫
M

f (ζ )(
φ(ζ )
φ(z)

)m

ζ − z
dζ. (1.4)

A posteriori, the convergence in (1.4) is uniform over the compact subsets of∆.
We remark here that the quenching function is not unique. On one hand it is a

possible to obtain it by solving the corresponding Dirichlet problem, on the other han
approach is not explicit enough (see however [4]). Sometimes, one can obtain the q
ing function ad-hoc, as is the case here. Other such cases (and their multidime
analogues) were studied in [2,3].

The first sections of the present paper are devoted to the description of the c
holomorphic functions in the cone∆ which are representable by the Carleman inte
representation formula (1.4). The crucial Lemma 3.6 is a nontrivial refinement of the
ilar argument in [4].

As a main application we will state an extension theorem (see [9]). In general, o
looking to find necessary and sufficient conditions for a functionf ∈ L1(M) to be ex-
tendable into an analytic function in∆, belonging to the classNH1

M(∆) (Section 2). Such
results were obtained in [2–4] for other types of simply connected domains. However,
separate case seems so distinct that until now we were not able to formulate a gene
of theorem to cover all the cases.

2. The class of functions representable by Carleman integral representation formula

For the above cone∆ and the quenching functionφ defined by(1.1) we consider the
domains

∆τ = {
z ∈ ∆:

∣∣φ(z)
∣∣ > 1+ τ

}
, (2.1)

where τ > 0, τ → 0. Geometrically, the domains∆τ are bounded by hyperbola
rn cos(nθ) = ln(1 + τ), θ = ± π

2n
, and the baseM . The vertex of the hyperbola is at th

point ζ0,τ = (ln |1+ τ |) 1
n . Furthermore, if

Mτ = M ∩ {
z ∈ C:

∣∣φ(z)
∣∣ � 1+ τ

}
,

Aτ = {
z ∈ ∆:

∣∣φ(z)
∣∣ = 1+ τ

}
(2.2)

then∂∆τ = Mτ ∪ Aτ .
Let {τn} be a decreasing sequence of positive numbers converging to 0. If{∆τn} is

the sequence of the domains defined as in (2.1) then it is an Ahlfors regular exha
of the domain∆ attached to the baseM . By Ahlfors regular exhaustion of the cone∆
attached to the baseM we mean that the sequence of the domains{∆τn} is increasing, tha

is ∆τn ⊂ ∆τn+1 for everyn ∈ N, ∂∆τn → ∂∆, ∂∆τn ∩ ∂∆ = Mτn ⊂ M and satisfies
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(1) ∆ = ⋃
n ∆τn ,

(2) the boundary∂∆τn is an Ahlfors regular curve, that is,l(∂∆τn ∩D(b, r)) � Cr , where
D(b, r) is a disk of radiusr , and centerb ∈ ∂∆τn , l is the length of the curve∂∆τn ∩
D(b, r), and the constantC is independent ofb [4].

Furthermore, there is a sense of subordination of the exhaustion{∆τn} of the domain
∆ to the quenching functionφ off the setM . To be more precise, one has that for ev
z ∈ ∆τn fixed, limm→∞ |φm(ζ )|

|φm(z)| = 0 uniformly inζ ∈ ∂∆τn \Mτn . Indeed, ifζ ∈ ∂∆τn \Mτn

then|φ(ζ )| = 1+τn. On the other hand, from the definition of∆τn we have|φ(z)| > 1+τn

wheneverz ∈ ∆τn .
Next, we recall the following

Definition 2.1. A function f (z) holomorphic in∆ belongs to the classEp(∆), p > 0,
if there exists a sequence of curvesγm in ∆ converging to∂∆, in the sense that{γm}
eventually surrounds each compact sub-domain of∆, such that∫

γm

∣∣f (z)
∣∣p |dz| � C1,

whereC1 is independent ofm.

Hence, if a functionh ∈ E1(∆τn) thenh has angular boundary values, denoted a
by h, almost everywhere on∂∆τn and

sup
m

∫
γm,n

∣∣h(z)
∣∣ |dz| < ∞,

whereγm,n are rectifiable curves converging to∂∆τn . Now we are ready to introduce th
class of holomorphic functions that belong to the Hardy classH1 near the baseM [2–4].

Definition 2.2. We say that a holomorphic functionf ∈ H(∆) with angular boundary
values defined almost everywhere onM (denoted also byf ) belongs to the Hardy clas
H1 near the baseM and denote this class byNH1

M(∆) if f ∈ E1(Wn), where{Wn}n is
an Ahlfors regular exhaustion of∆ attached toM .

Remark 2.1. It is clear that the above definition does not depend on Ahlfors regula
haustion of∆ attached toM [4]. This allows us to consider the particular Ahlfors regu
exhaustion of{∆τn} of ∆ attached toM and subordinated to the quenching functionφ.
This approach was already used in [2–4].

Example 3.1 will show thatNH1
M(∆) �= E1(∆).

Next we state a characterization theorem (in the spirit of results in [2–4]).

Theorem 2.1. Let M be the base of the cone∆ opposite to the vertex at the origin andφ,
defined by(1.1), be its quenching function. Letf be a holomorphic function in the cone∆
having angular boundary values almost everywhere onM denoted also byf and satisfying

f ∈ L1(M). Then for the Ahlfors regular exhaustion{∆τn} defined by(2.1)one has:



G. Chailos, A. Vidras / J. Math. Anal. Appl. 310 (2005) 657–672 661

the

n
o

n

at

al
sets
(1) If f ∈ NH1
M(∆) then the relation(1.4)holds and the convergence is uniform over

compact subsets.
(2) If (1.4)holds point-wise thenf ∈ E1(∆τ ), τ > 0, ∆τ �= ∅.

Proof of the first part. Sincef ∈ NH1
M(∆), we take the Ahlfors regular exhaustio

{∆τn}n (constructed above) of∆ which is attached to the baseM and is subordinated t
the quenching functionφ(z) = ezn

. Let z ∈ ∆ be a fixed point. Thenz ∈ ∆τn for somen.
Hencef ∈ E1(∆τn) and therefore by Cauchy formula we have

f (z) = 1

2πi

∫
Mτn

f (ζ )
φm(ζ )

φm(z)

dζ

ζ − z
+ 1

2πi

∫
Aτn

f (ζ )
φm(ζ )

φm(z)

dζ

ζ − z
, (2.3)

whereMτn = M ∩ ∂∆τn . The second integral tends to 0 asm → ∞ because the exhaustio
{∆τn}n is subordinated to the quenching functionφ. Thus

lim
m→∞

1

2πi

∫
Mτn

f (ζ )φm(ζ )φ−m(z)
dζ

ζ − z

= lim
m→∞

1

2πi

(∫
M

f (ζ )
φm(ζ )

φm(z)

dζ

ζ − z
−

∫
M\Mτn

f (ζ )
φm(ζ )

φm(z)

dζ

ζ − z

)
.

We claim that the second integral tends to 0 asm → ∞. Indeed, it is enough to show th
for everyz ∈ ∆τn fixed, one has limm→∞ |φm(ζ )

φm(z)
| = 0 for everyζ ∈ M \ Mτn . To show this,

one observes from the construction of the exhaustion, sinceζ ∈ M \ Mτn , that ζ ∈ ∂∆τ ′
n

for someτ ′
n < τn. Hence,|φ(z)| > 1+ τn > 1+ τ ′

n = |φ(ζ )|. Thus, the Carleman integr
representation formula(1.4) holds. The uniform convergence over the compact sub
follows. This concludes the proof of the first part.�

The rest of the proof will occupy the next section.

3. Proof of the second part of Theorem 2.1

Our first step is to rewrite(1.4) in an equivalent way. We observe that

(
φ(ζ )
φ(z)

)m

ζ − z
= 1

ζ − z
+

[(
φ(ζ )

φ(z)

)m−1

+
(

φ(ζ )

φ(z)

)m−2

+ · · · + 1

]
φ(ζ ) − φ(z)

φ(z)(ζ − z)
. (3.1)

The relation (3.1) implies the following

Lemma 3.1. Let f be a function holomorphic in the cone∆ with the property that its
boundary values onM belong to the classL1(M). If f is representable by(1.4) then
point-wise

f (z) = 1
∫

f (ζ ) dζ +
∞∑ gm(z)

m+1
, z ∈ ∆, (3.2)
2πi
M

ζ − z
m=0

φ (z)
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gm(z) = 1

2πi

∫
M

f (ζ )φm(ζ )
φ(ζ ) − φ(z)

ζ − z
dζ, z ∈ ∆,

are analytic in∆ for everym = 0,1,2, . . . .

Keeping the notation of the above lemma, observe that for everyz ∈ ∆ the function

G(z) =
∞∑

m=0

gm(z)

φm+1(z)
= f (z) − 1

2π

∫
M

f (ζ )

ζ − z
dζ

is holomorphic in∆. This implies that for everyw0 ∈ ∆ there exists anr > 0 so that

G(z) =
∞∑
i=0

G(w0)
(i)

i! (z − w0)
i , z ∈ D(w0, r).

We will show that for particular choices ofw0 (which are sufficiently close toxM ) this
radiusr is sufficiently large to extendG across the baseM . That is, we will prove that bas
M = D(w0, r) ∩ ∂∆ and thereforeG has analytic continuation across the arcM .

In order to accomplish this we will follow the approach developed in [3]. As a first s
we expand into power series inz − w0 the functions gm(z)

φm+1(z)
, m = 0,1,2, . . . , within the

same disk, whose center will be chosen conveniently. Then in (3.2) one has series o
series and the main difficulty is to interchange the order of summation (no known
conditions are in generally present).

Definition 3.1. A point w0 ∈ (0,∞) ∩ ∆ is calledadjacentto M if for every ζ ∈ EM,ε the
circle centered atw0 and radius|w0 − ζ | intersectsM at exactly two points.

Remark 3.1. The above condition forces the adjacent points to be sufficiently close toxM .
This condition will be used in the proof of Lemma 3.6.

Lemma 3.2. For the cone∆, let w0 be adjacent toM . Then, for everym ∈ N, the series

φm(z) = emzn =
∞∑
i=0

γm,w0,i (z − w0)
i ,

converges, wheneverz ∈ D(w0,Rw0), where the radiusRw0 is independent ofm and is
equal toRw0 = |w0 − z0

1|. Furthermore,

|γm,w0,i | �
Mm,Rw0

Ri
w0

, (3.3)

whereMm,Rw0
= maxz∈D̄(w0,Rw0) |φm(z)|.
Proof. The functionφm(z) is entire for everym = 0,1,2, . . . . �
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Remark here that form = 1 the Taylor coefficientsγ1,w0,i of the above power serie
correspond the Taylor coefficients of the power series expansion about the pointw0 of the
functionφ(z) = ezn

. The next lemma expresses the local division property.

Lemma 3.3. For the cone∆, let w0 ∈ ∆ be adjacent to the baseM . Then for z ∈
D(w0,Rw0) andζ ∈ M one has

φ(z) − φ(ζ )

z − ζ
=

∞∑
i=1

φ(ζ ) − ∑i−1
j=0 γ1,w0,j (ζ − w0)

j

(ζ − w0)i
(z − w0)

i−1. (3.4)

Proof. Recall that from the previous lemma we have that for everyz ∈ D(w0,Rw0) the
following expansion is valid:φ(z) = ∑∞

j=0 γ1,w0,j (z − w0)
j . Furthermore, one has fo

everyζ ∈ M ⊂ D(w0,Rw0) that

φ(z) − φ(ζ )

z − ζ
=

∞∑
i=0

γ1,w0,i

((z − w0)
i − (ζ − w0)

i)

z − ζ

= 1

z − ζ

( ∞∑
i=0

(z − ζ )γ1,w0,i

(
i−1∑
j=0

(z − w0)
i−1−j (ζ − w0)

j

))

= φ(ζ ) − γ1,w0,0

ζ − w0
+ φ(ζ ) − ∑1

j=0 γ1,w0,j (ζ − w0)
j

(ζ − w0)2
(z − w0) + · · ·

+ φ(ζ ) − ∑i−1
j=0 γ1,w0,j (ζ − w0)

j

(ζ − w0)i
(z − w0)

i−1 + · · · , (3.5)

after regrouping. The regrouping is possible because on one hand forζ ∈ M the inequality
rw0 = max{|ζ − w0|, |z − w0|} < Rw0 implies∣∣∣∣∣

i−1∑
j=0

(z − w0)
i−1−j (ζ − w0)

j

∣∣∣∣∣ �
i−1∑
j=0

∣∣(z − w0)
i−1−j (ζ − w0)

j
∣∣ � i(rw0)

i−1

and on the other hand one has the relation (3.3).�
We state the following lemma, without proof since its proof is elementary.

Lemma 3.4. For the cone∆, let w0 ∈ ∆ be adjacent to the baseM . Then, for everym ∈ N
andz ∈ D(w0,Rw0) one has the equality

gm(z) = 1

2πi

∫
M

f (ζ )φm(ζ )
φ(ζ ) − φ(z)

ζ − z
dζ =

∞∑
i=0

λM,m,i(z − w0)
i . (3.6)

The following lemma we need is taken from [4]. We include the proof for reaso

completeness.
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Lemma 3.5. Let Ω be a bounded, simply connected domain with Ahlfors regular bo
ary. LetΓ ⊂ ∂Ω be a curve, whose lengthl(Γ ) is strictly smaller thanl(∂Ω). If Ω ′ is
any simply connected sub-domain ofΩ with Ahlfors regular boundary containing a curv
γ ⊂ Γ then the Cauchy type integral

h(z) = 1

2πi

∫
Γ

φ(t)

t − z
dt, z ∈ Ω, φ ∈ L1(Γ ),

belongs to the classEp(Ω ′) for every0< p < 1.

Proof. Since the boundaries of the domainsΩ,Ω ′ and Ω \ Ω̄ ′ are Ahlfors regular
Smirnov theorem holds, that is, the Cauchy type integrals overΓ,γ and overΓ \ γ of
theL1-functionφ belong to the corresponding Hardy classEp for every 0< p < 1. The
original result was proven for the unit disk by V. Smirnov (1928) [10, Theorem 3.5]
was extended to any simply connected domain with Ahlfors regular boundary in [5–

If for φ ∈ L1(Γ ) andz ∈ Ω ,

h(z) = 1

2πi

∫
Γ

φ(t)

t − z
dt = 1

2πi

∫
γ

φ(t)

t − z
dt + 1

2πi

∫
Γ \γ

φ(t)

t − z
dt = h1(z) + h2(z),

thenh1 ∈ Ep(Ω ′) for every 0< p < 1. Furthermore, it is clear that for every 0< p < 1
one has thath2 ∈ Ep(Ω) ∩ Ep(Ω \ Ω̄ ′). Let {Ωn}n be a sequence of domains such t
Ωn ⊂ Ωn+1, ∂Ωn �→ ∂Ω and

∫
∂Ωn

|h2(z)|p |dz| � M1 < ∞. Such a sequence of domai
exist from the fact thath2 ∈ Ep(Ω). Thus, it follows with the aid of Theorem 10.3 in [8
that ∫

∂(Ωn\Ω̄ ′
n)

∣∣h2(z)
∣∣p|dz| � M2 < ∞,

whereΩ ′
n = Ω ′ ∩ Ωn for everyn.

Furthermore∫
∂Ω ′

n

h2(t)

t − z
dt =

∫
∂Ωn

h2(t)

t − z
dt −

∫
∂(Ωn\Ω̄ ′

n)

h2(t)

t − z
dt, z ∈ Ωn.

Thus ∫
∂Ω ′

n

∣∣h2(z)
∣∣p |dz| � M1 + M2.

That is, by Definition 2.1,h2 ∈ Ep(Ω ′) for every 0< p < 1. This concludes the proof o
the lemma. �
Remark 3.2. The above Lemma 3.5 covers the small gap present in the proofs of T
rem 2.2 in [2] and in Theorems 2.1 and 2.8 in [3]. In those papers the authors assum
for the domains with Ahlfors regular boundaries the two definitions of the Hardy cla

were equivalent. That is, while working with the Hardy classes in the sense of Smirnov,
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they used the definition through the harmonic majorization in order to prove the cla
the above lemma. Otherwise the proofs present in [2,3] are correct.

Finally, we have the following crucial lemma.

Lemma 3.6. For the cone∆, let the pointw0 be adjacent to the arcM . Let alsoG(z) be
the holomorphic function defined by the point-wise summation for everyz ∈ ∆:

G(z) =
∞∑

m=0

gm(z)

φm+1(z)
.

Then

G(k)(w0)

k! =
∞∑

m=0

k∑
j=0

γm+1,w0,j λM,m,k−j .

Furthermore

lim sup
k

k

√
k!

G(k)(w0)
� Rw0.

Proof. By Lemmas 3.3–3.4 for everym ∈ N the functionsgm andφ−(m+1) are expanded
into the power series in the same diskD(w0,Rw0). Therefore forz ∈ D(w0,Rw0) the
following holds:

gm(z)

φm+1(z)
=

∞∑
k=0

(
k∑

j=0

γm+1,w0,j λM,m,k−j

)
(z − w0)

k. (3.7)

On the other hand, the fact that the functionG(z) is analytic in∆ ∩ D(w0,Rw0) implies
that forr > 0, sufficiently small, one has that

G(z) =
∞∑

k=0

G(k)(w0)

k! (z − w0)
k, z ∈ D(w0, r).

Denote by

ρ = lim sup
k

k

√
k!

G(k)(w0)

the radius of convergence of the power series representing the functionG(z) around the
pointw0.

By (3.7) one has that

G(w0) =
∞∑

m=0

gm(w0)

φm+1(w0)
=

∞∑
m=0

βm,0, whereβm,0 = γm+1,w0,0λM,m,0.

Again, by (3.7) and the point-wise equality forz ∈ D(w0, ρ),

G(z) − G(w0) = 1
∞∑(

gm(z) − βm,0

)

z − w0 z − w0

m=0
φm+1(z)
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evaluated atz = w0, one deduces that

G′(w0) =
∞∑

m=0

βm,1, whereβm,1 =
1∑

j=0

γm+1,w0,j λM,m,1−j .

We repeat the same procedure for everyk = 0,1,2,3, . . . , and obtain that

G(k)

k! (w0) =
∞∑

m=0

βm,k, whereβm,k =
k∑

j=0

γm+1,w0,j λM,m,k−j .

It follows directly from the above that

G(k)(w0)

k! =
∞∑

m=0

(
k∑

j=0

γm+1,w0,j λM,m,k−j

)
.

Or equivalently, in the diskD(w0, ρ) one can interchange the order of summation just fr
point-wise convergence:

∞∑
m=0

( ∞∑
k=0

βm,k(z − w0)
k

)
=

∞∑
k=0

( ∞∑
m=0

βm,k

)
(z − w0)

k. (3.8)

We claim thatρ = Rw0.
Actually, for almost all 0< r < Rw0, such that∂D(w0, r) ∩ M = {b0,r , b

′
0,r} is a two

point set (Definition 3.1 of the adjacent points guarantee the existence of suchr , which
actually are sufficiently close toRw0), the functionG(z) has angular boundary values
the two points{b0,r , b

′
0,r}. If

F+(z) = 1

2πi

∫
M

f (ζ ) dζ

ζ − z
, z ∈ ∆,

the existence of angular boundary values onM for the functionG(z) follows from the
identity G(z) = f (z) − F+(z), z ∈ ∆, and the fact that the Cauchy type integrals o
Ahlfors regular curves ofL1 functions belong to the Hardy classEp, 0< p < 1 (see the
first paragraph of the proof of Lemma 3.5). Denote the angular boundary values oG at
these points byG(b0,r ),G(b′

0,r ) correspondingly. These coincide with minus the ang
boundary value of the exterior Cauchy integral

−F−(w) = − 1

2πi

∫
M

f (ζ ) dζ

ζ − w
, w ∈ ∆c,

almost everywhere, since for the boundary values atz0 of f it holds that f (z0) =
F+(z0) − F−(z0). (A detailed treatment for the boundary values of Cauchy type inte
along Ahlfors regular curves, can be found in [7] and [10].) That is,−F− is the pseudo
continuation ofG on the arc∂D(w0, r) ∩ ∆̄c. On this arc, and near the pointsb0,r , b

′
0,r we

take two pointsd0,r , d
′
0,r correspondingly. Join the pointsb0,r , b

′
0,r by any smooth, nontan
gent toM , simple curvel lying in ∆ and leaving the pointw0 to the left. This curve divides
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the diskD(w0, r) into two disjoint simply connected domainsΩ1,Ω2 having Ahlfors reg-
ular boundary and such thatw0 ∈ Ω1 ⊂ ∆. Then

∂Ω1 = (
∂D(w0, r) ∩ ∆̄

) ∪ l, ∂Ω2 = (
∂D(w0, r) ∩ ∆c

) ∪ l.

Here we would like to note that from the definition of the adjacent points,∂Ω2\ l ⊂ ∆c, and
hence the part ofM with endpointsb0,r , b

′
0,r is a subset ofΩ̄2. The fact that the functionG

has angular boundary values at the pointsb0,r , b
′
0,r implies thatG ∈ H∞(Ω1). Therefore,

for everyk ∈ N one has that

G(k)(w0)

k! = 1

2πi

∫
∂Ω1

G(ζ ) dζ

(ζ − w0)k+1
.

Furthermore,∣∣∣∣∣ 1

2πi

∫
∂D(w0,r)∩∆̄

G(ζ ) dζ

(ζ − w0)k+1

∣∣∣∣∣ � Mr

rk+1
, (3.9)

whereMr = max|G(ζ )|, ζ ∈ ∂D(w0, r) ∩ ∆̄.

We modify the boundary of the domainΩ1 by adding to it the arcŝb0,r , d0,r , ̂b′
0,r , d

′
0,r

contained in∂D(w0, r) ∩ ∆c. As usual, the orientation of arcs is given by the order o
endpoints. Then for the union of arcs

L= ̂d0,r , b0,r ∪ (
∂D(w0, r) ∩ ∆̄

) ∪ ̂b′
0,r , d

′
0,r ∪ ̂d ′

0,r , b
′
0,r ∪ l ∪ ̂b0,r , d0,r

one has

G(k)(w0)

k! = 1

2πi

∫
∂Ω1

G(ζ ) dζ

(ζ − w0)k+1
= 1

2πi

∫
L

G(ζ ) dζ

(ζ − w0)k+1
,

where for the integration ofG over the part ofL outside the unit disk we use its pseud
continuation. Thus∣∣∣∣∣ 1

2πi

∫
̂d0,r ,b0,r∪(∂D(w0,r)∩∆̄)∪ ̂b′

0,r ,d
′
0,r

G(ζ ) dζ

(ζ − w0)k+1

∣∣∣∣∣ � M ′
r

rk+1
, (3.10)

whereM ′
r = max|G(ζ )|, ζ ∈ ̂d0,r , b0,r ∪ (∂D(w0, r) ∩ ∆̄) ∪ ̂b′

0,r , d
′
0,r .

Next, we will show that over the part̂d0,r , b0,r ∪ l ∪ ̂b′
0,r , d

′
0,r of ∂Ω2 one has similar

estimate. Actually, for everym ∈ N the function

gm(ζ )

φm+1(ζ )
∈H(Ω̄2),

since it is analytic in the diskD(w0,Rw0) containing properly the closure ofΩ2. Therefore
for everyk = 0,1,2, . . . ,

1
∫ gm(ζ )

φm+1(ζ )

k
dζ = 0, for all m = 0,1,2, . . . .
2πi
∂Ω2

(ζ − w0)
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Hence for everym = 0,1,2, . . . and for everyk = 0,1,2, . . . the following holds:

1

2πi

∫
̂d0,r ,b0,r∪l∪ ̂b′

0,r ,d
′
0,r

gm(ζ )

φm+1(ζ )

(ζ − w0)k
dζ = − 1

2πi

∫
̂d ′
0,r ,d0,r

gm(ζ )

φm+1(ζ )

(ζ − w0)k
dζ. (3.11)

Furthermore, the definition of the quenching functionφ in (1.1) and the construction of th
exhaustion of∆ (see (2.1)), imply that for everyζ ′ ∈ M one has that|φ(ζ ′)| � exn

M . On the
other hand for the pointsd ′

0,r , d0,r of the circle∂D(w0, r) which are sufficiently close to

the point{x ∈ R: x > xM} ∩ ∂D(w0, r) one has that for everyζ ∈ ̂d ′
0,r , d0,r the inequality

|φ(ζ )| > exn
M+ε holds for someε > 0. This is possible because the adjacent points are c

to xM from below (see Remark 3.1). Thus, ifζ ′ ∈ M andζ ∈ ̂d ′
0,r , d0,r then

|φ(ζ )|
|φ(ζ ′)| � CM > 1, (3.12)

whereCM is a constant. Thus forζ ∈ ̂d ′
0,r , d0,r ,∣∣∣∣ gm(ζ )

φm(ζ )

∣∣∣∣ � A′
maxC

−m
M

∫
M

∣∣f (y)
∣∣dy,

where∣∣∣∣φ(ζ ) − φ(y)

ζ − y

∣∣∣∣ � A′
max= 2Cmax

dist( ̂d ′
0,r , d0,r ,M)

, whereCmax= max
ζ∈ ̂d ′

0,r ,d0,r

∣∣φ(ζ )
∣∣.

This implies that

∞∑
m=0

∫
̂d ′
0,r ,d0,r

| gm(ζ )

φm+1(ζ )
|

|(ζ − w0)k+1| dζ < ∞.

Thus for almost everyζ ∈ ̂d ′
0,r , d0,r and for everyk ∈ N the sum

Ψk(ζ ) =
∞∑

m=0

gm(ζ )

φm+1(ζ )

(ζ − w0)k+1

is well-defined continuous, bounded function and

∫
̂d ′
0,r ,d0,r

Ψk(w)dw =
∞∑

m=0

∫
̂d ′
0,r ,d0,r

gm(w)

φm+1(w)

(w − w0)k+1
dw.

In order to interchange the order of integration and summation in the sum of the left

side of (3.11) overl one uses Egoroff theorem. Over the rest of the curve the integral of
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−F−, by changing the contour of integration, is equal to the integral of the
∑

m
gm(z)

φm+1(z)
.

Thus, abusing slightly the notation, one has∣∣∣∣∣
∞∑

m=0

∫
̂d0,r ,b0,r∪l∪ ̂b′

0,r ,d
′
0,r

gm(w)

φm+1(w)

(w − w0)k+1
dw

∣∣∣∣∣ =
∣∣∣∣∣

∫
̂d ′
0,r ,d0,r

Ψk(w)dw

∣∣∣∣∣ � c

rk+1
, (3.13)

for some constantc > 0. Combining (3.10), (3.13) we obtain∣∣∣∣G(k)

k!
∣∣∣∣ � c′

rk+1
,

wherec′ > 0 is a suitable constant. It follows that the corresponding power series ofG(z)

aboutw0 has radius of convergence at leastr . But r → Rw0 from below, thus we get tha
the radius of convergence for the power series ofG(z) aboutw0 is at the least equal toRw0.
Summarizing, it implies that forβi = ∑∞

m=0 βm,i one has

∞∑
i=0

βi(z − w0)
i =

∞∑
i=0

∞∑
m=0

βm,i(z − w0)
i

=
∞∑

m=0

∞∑
i=0

(
i∑

j=0

γm+1,w0,j λM,m,i−j

)
(z − w0)

i

= lim
m→∞

1

2πi

∫
M

f (ζ )
φm(ζ )

φm+1(z)

φ(ζ ) − φ(z)

ζ − z
dζ,

wheneverz ∈ D(w0,Rw0) ∩ ∆. �
The last lemma implies that minus the exterior Cauchy type integral which is equ

−F−(z) = − 1

2πi

∫
M

f (ζ )

ζ − z
dζ, (3.14)

wheneverz /∈ ∆̄, can be continued analytically through the open arcM . This follows from
the fact thatG(z) = −F−(z) almost everywhere onM and thatG(z) has analytic continu
ation across the arcM . This means for the radiusRw0 = |z1

0 − w0| the functionG can be
expanded into the power series in the diskD(w0,Rw0), that is

G(z) =
∞∑
i=0

µi(z − w0)
i, z ∈ D(w0,Rw0), µi = G(i)(w0)

i! . (3.15)

At this point we conclude the proof of the second part of Theorem 2.1.

Proof. It is enough to show that for everyz ∈ ∆ one has that

f (z) = 1
∫

f (ζ ) dζ + g(z), (3.16)

2πi

M
ζ − z
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whereg(z) is holomorphic function which has analytic continuation acrossM . That is,
there exists open, bounded, connected setU containingM and satisfying∂U ∩ M̄ =
{z0

1, z
0
2}, andĝ ∈ H(∆ ∪ U) such thatĝ(z) = g(z), z ∈ ∆. To be more precise, Lemma 3

implies thatF+(z) = 1
2πi

∫
M

f (ζ )dζ
ζ−z

belongs toEp(∆τ ) for everyp < 1 and obviously the

function g(z) is holomorphic in∆̄τ . These two facts, the observation thatf ∈ L1(∂∆τ )

for almost allτ > 0 and two-fold application of the Smirnov theorem is the essence o
proof of Theorem 2.8 in [3] (even though it was proven there for different type of sim
connected domains). Thus the conclusion of Theorem 2.8 from [3] is valid in this case
Hence (3.16) implies the second part of Theorem 2.1.

Actually, Lemma 3.1 and relation (3.2) imply that in order to prove the last part
needs to show that the holomorphic function, defined as a point-wise limit,

G(z) =
∞∑

m=0

gm(z)

φm+1(z)
= f (z) − 1

2πi

∫
M

f (ζ )

ζ − z
dζ, z ∈ ∆,

can be continued analytically across the open arcM . Lemmas 3.2–3.4 show that eve
term gm(z)

φm+1(z)
of the above series is expanded into a power series about an adjacen

w0 in a disk of common radiusD(w0,Rw0). Furthermore,Rw0 is smaller than the radiu
of convergence for everym. Lemma 3.6 shows that in the diskD(w0,Rw0) the sum of the
power series that represent the termsgm(z)

φm+1(z)
is equal to the power series, whose coefficie

are the sums of coefficients of the same order, in the same disk. That is the chan
summation order is established by Lemma 3.6.

Therefore, forz ∈ ∆,

f (z) = F+(z) + G(z) = 1

2πi

∫
M

f (ζ ) dζ

ζ − z
+ G(z),

where the holomorphic functionG(z) has analytic continuation across the arcM . From the
discussion above one concludes the proof of Theorem 2.1.�
Example 3.1. The following example shows thatNH1

M(∆) �= E1(∆). If d ∈ ∂∆ is such
thatd−1 ∈ ∂∆\M̄ then the functionf (z) = ∑∞

i=0(dz)i = 1
1−dz

, z ∈ ∆, belongs to the clas
of holomorphic functions representable by Carleman formula (1.4) but does not bel
the Hardy spaceE1(∆).

4. An extension theorem

In this section the cone∆ and its baseM are as in the previous sections. For the quen
ing functionφ defined by(1.1) we consider the sequence of functions

gm(z) =
∫
M

f (ζ )φm(ζ )
φ(z) − φ(ζ )

z − ζ
dζ, m = 0,1,2,3, . . . . (4.1)

From the definition of the sequence{gm(z)}m follows that these functions are holomorph

everywhere inC \ M . One can show thatgm(z) is analytic inD(w0,Rw0) for every point
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w0 ∈ ∆ adjacent to the baseM (see Lemma 3.4). The size of the diskD(w0,Rw0) does
not depend onm and the radius is equal toRw0 = |w0 − z1

0|. Therefore, for everym one
has that

gm(z)

φm+1(z)
=

∞∑
l=0

βm,w0,l(z − w0)
l, z ∈ D(w0,Rw0), (4.2)

(
lim sup

l

l
√|βm,w0,l |

)−1
� Rw0. (4.3)

Next, for everyl ∈ N we define the sequence of coefficients

βl =
∞∑

m=0

βm,w0,l . (4.4)

Now we are ready to formulate an extension theorem. The proof of this theorem goes
the steps of the proof of Theorem 2.1 (the second part), but in reverse order and th
is omitted.

Theorem 4.1. LetM be as before andf ∈ L1(M). If for some adjacent pointw0 ∈ ∆,(
lim sup

l

l
√|βl |

)−1
� Rw0, (4.5)

and the equality

∞∑
m=0

∞∑
l=1

βm,l(z − w0)
l =

∞∑
l=1

βl(z − w0)
l (4.6)

holds forz ∈ ∆∩D(w0,Rw0), thenf extends to a functionΦ holomorphic in∆ belonging
to the classNH1

M(∆). Furthermore this extension is defined by

Φ(z) = lim
m→∞

1

2πi

∫
M

φm(ζ )

φm(z)

f (ζ ) dζ

ζ − z
, (4.7)

wheneverz ∈ ∆. The convergence is uniform over the compact subsets of∆.
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